コード例 #1
0
def _create_siamese(net_path, net_x, net_z):
    # read mat file from net_path and start TF Siamese graph from placeholders X and Z
    params_names_list, params_values_list = _import_from_matconvnet(net_path)

    # loop through the flag arrays and re-construct network, reading parameters of conv and bnorm layers
    for i in range(_num_layers):
        print('> Layer ' + str(i + 1))
        # conv
        conv_W_name = _find_params('conv' + str(i + 1) + 'f',
                                   params_names_list)[0]
        conv_b_name = _find_params('conv' + str(i + 1) + 'b',
                                   params_names_list)[0]
        print('Conv:setting %s %s' % (conv_W_name, conv_b_name))
        print('Conv : stride %s filter-group %s' %
              (str(_conv_stride[i]), str(_filtergroup_yn[i])))
        conv_W = params_values_list[params_names_list.index(conv_W_name)]
        conv_b = params_values_list[params_names_list.index(conv_b_name)]
        # batchnorm
        if _bnorm_yn[i]:
            bn_beta_name = _find_params('bn' + str(i + 1) + 'b',
                                        params_names_list)[0]
            bn_gamma_name = _find_params('bn' + str(i + 1) + 'm',
                                         params_names_list)[0]
            bn_moments_name = _find_params('bn' + str(i + 1) + 'x',
                                           params_names_list)[0]
            #print ('\t\tBNORM: setting '+bn_beta_name+' '+bn_gamma_name+' '+bn_moments_name
            bn_beta = params_values_list[params_names_list.index(bn_beta_name)]
            bn_gamma = params_values_list[params_names_list.index(
                bn_gamma_name)]
            bn_moments = params_values_list[params_names_list.index(
                bn_moments_name)]
            bn_moving_mean = bn_moments[:, 0]
            bn_moving_variance = bn_moments[:,
                                            1]**2  # saved as std in matconvnet
        else:
            bn_beta = bn_gamma = bn_moving_mean = bn_moving_variance = []

        # set up conv "block" with bnorm and activation
        net_x = set_convolutional(net_x, conv_W, np.swapaxes(conv_b,0,1), _conv_stride[i], \
                            bn_beta, bn_gamma, bn_moving_mean, bn_moving_variance, \
                            filtergroup=_filtergroup_yn[i], batchnorm=_bnorm_yn[i], activation=_relu_yn[i], \
                            scope='conv'+str(i+1), reuse=False)

        # notice reuse=True for Siamese parameters sharing
        net_z = set_convolutional(net_z, conv_W, np.swapaxes(conv_b,0,1), _conv_stride[i], \
                            bn_beta, bn_gamma, bn_moving_mean, bn_moving_variance, \
                            filtergroup=_filtergroup_yn[i], batchnorm=_bnorm_yn[i], activation=_relu_yn[i], \
                            scope='conv'+str(i+1), reuse=True)

        # add max pool if required
        if _pool_stride[i] > 0:
            print("_pool_stride")

    return net_z, net_x, params_names_list, params_values_list
コード例 #2
0
def _create_siamese(net_path, net_x, net_z):
    # read mat file from net_path and start TF Siamese graph from placeholders X and Z
    params_names_list, params_values_list = _import_from_matconvnet(net_path)

    # loop through the flag arrays and re-construct network, reading parameters of conv and bnorm layers
    for i in xrange(_num_layers):
        print '> Layer '+str(i+1)
        # conv
        conv_W_name = _find_params('conv'+str(i+1)+'f', params_names_list)[0]
        conv_b_name = _find_params('conv'+str(i+1)+'b', params_names_list)[0]
        print '\t\tCONV: setting '+conv_W_name+' '+conv_b_name
        print '\t\tCONV: stride '+str(_conv_stride[i])+', filter-group '+str(_filtergroup_yn[i])
        conv_W = params_values_list[params_names_list.index(conv_W_name)]
        conv_b = params_values_list[params_names_list.index(conv_b_name)]
        # batchnorm
        if _bnorm_yn[i]:
            bn_beta_name = _find_params('bn'+str(i+1)+'b', params_names_list)[0]
            bn_gamma_name = _find_params('bn'+str(i+1)+'m', params_names_list)[0]
            bn_moments_name = _find_params('bn'+str(i+1)+'x', params_names_list)[0]
            print '\t\tBNORM: setting '+bn_beta_name+' '+bn_gamma_name+' '+bn_moments_name
            bn_beta = params_values_list[params_names_list.index(bn_beta_name)]
            bn_gamma = params_values_list[params_names_list.index(bn_gamma_name)]
            bn_moments = params_values_list[params_names_list.index(bn_moments_name)]
            bn_moving_mean = bn_moments[:,0]
            bn_moving_variance = bn_moments[:,1]**2 # saved as std in matconvnet
        else:
            bn_beta = bn_gamma = bn_moving_mean = bn_moving_variance = []
        
        # set up conv "block" with bnorm and activation 
        net_x = set_convolutional(net_x, conv_W, np.swapaxes(conv_b,0,1), _conv_stride[i], \
                            bn_beta, bn_gamma, bn_moving_mean, bn_moving_variance, \
                            filtergroup=_filtergroup_yn[i], batchnorm=_bnorm_yn[i], activation=_relu_yn[i], \
                            scope='conv'+str(i+1), reuse=False)
        
        # notice reuse=True for Siamese parameters sharing
        net_z = set_convolutional(net_z, conv_W, np.swapaxes(conv_b,0,1), _conv_stride[i], \
                            bn_beta, bn_gamma, bn_moving_mean, bn_moving_variance, \
                            filtergroup=_filtergroup_yn[i], batchnorm=_bnorm_yn[i], activation=_relu_yn[i], \
                            scope='conv'+str(i+1), reuse=True)
    
        # TODO: Are we using max pooling? Remove if not. 
        # add max pool if required
        if _pool_stride[i]>0:
            print '\t\tMAX-POOL: size '+str(_pool_sz)+ ' and stride '+str(_pool_stride[i])
            net_x = tf.nn.max_pool(net_x, [1,_pool_sz,_pool_sz,1], strides=[1,_pool_stride[i],_pool_stride[i],1], padding='VALID', name='pool'+str(i+1))
            net_z = tf.nn.max_pool(net_z, [1,_pool_sz,_pool_sz,1], strides=[1,_pool_stride[i],_pool_stride[i],1], padding='VALID', name='pool'+str(i+1))

    print

    return net_z, net_x, params_names_list, params_values_list
コード例 #3
0
def _create_siamese(net_path, net_x, net_z, istrain):
    # loop through the flag arrays and re-construct network, reading parameters of conv and bnorm layers
    for i in range(_num_layers):
        print( '> Layer '+str(i+1))
        # set up conv "block" with bnorm and activation 
        net_x = set_convolutional(net_x, conv_W, np.swapaxes(conv_b,0,1), _conv_stride[i], istrain=istrain, \
                            filtergroup=_filtergroup_yn[i], batchnorm=_bnorm_yn[i], activation=_relu_yn[i], \
                            scope='conv'+str(i+1), reuse=False)
        
        # notice reuse=True for Siamese parameters sharing
        net_z = set_convolutional(net_z, conv_W, np.swapaxes(conv_b,0,1), _conv_stride[i], istrain=istrain, \
                            filtergroup=_filtergroup_yn[i], batchnorm=_bnorm_yn[i], activation=_relu_yn[i], \
                            scope='conv'+str(i+1), reuse=True)    
        
        # add max pool if required
        if _pool_stride[i]>0:
            print( '\t\tMAX-POOL: size '+str(_pool_sz)+ ' and stride '+str(_pool_stride[i]))
            net_x = tf.nn.max_pool(net_x, [1,_pool_sz,_pool_sz,1], strides=[1,_pool_stride[i],_pool_stride[i],1], padding='VALID', name='pool'+str(i+1))
            net_z = tf.nn.max_pool(net_z, [1,_pool_sz,_pool_sz,1], strides=[1,_pool_stride[i],_pool_stride[i],1], padding='VALID', name='pool'+str(i+1))

    print()

    return net_z, net_x, params_names_list, params_values_list
コード例 #4
0
def create_net(net_x, net_z):
    #-------------------------------------------------------------------------
    #function//net_x:instance frame ;net_z:template frame
    #-------------------------------------------------------------------------
    #not sure
    #W_param_list=[n for n in range(0,_nums_layers)]
    #b_param_list=[n for n in range(0,_nums_layers)]
    for i in range(_nums_layers):
        print('Layer ' + str(i + 1))

        #set up the conv bolck
        #set_convolutional(X,stride,bn_beta,bn_gamma,bn_init_mean,bn_init_var,batchnorm=True,activation=True,reuse=False,scope=None):
        print(net_z)
        print(net_x)
        net_x = set_convolutional(
            net_x,
            [_conv_w_sz[i], _conv_w_sz[i], _conv_w_in_c[i], _conv_w_out[i]],
            _conv_w_out[i],  #the shape of W and b
            _conv_stride[i],
            0,
            0,
            0,
            0,
            batchnorm=False,
            activation=_if_relu[i],
            reuse=True,
            scope='conv' + str(i + 1))

        net_z = set_convolutional(
            net_z,
            [_conv_w_sz[i], _conv_w_sz[i], _conv_w_in_c[i], _conv_w_out[i]],
            _conv_w_out[i],  #the shape of W and b
            _conv_stride[i],
            0,
            0,
            0,
            0,
            batchnorm=False,
            activation=_if_relu[i],
            reuse=True,
            scope='conv' + str(i + 1))
        print(net_z)
        print(net_x)
        print('Layer ' + str(i + 1) + ' conv end')
        #if having the pooling
        if _pool_stride[i] > 0:
            print("_pool_stride")
            net_x = tf.nn.max_pool(
                net_x, [1, _pool_sz[i], _pool_sz[i], 1],
                strides=[1, _pool_stride[i], _pool_stride[i], 1],
                padding='VALID',
                name='pool' + str(i + 1))
            net_z = tf.nn.max_pool(
                net_z, [1, _pool_sz[i], _pool_sz[i], 1],
                strides=[1, _pool_stride[i], _pool_stride[i], 1],
                padding='VALID',
                name='pool' + str(i + 1))

        print(net_z)
        print(net_x)
        print('Layer ' + str(i + 1) + ' end')

    return net_z, net_x