def do_eval(dataset=None, vocab_file="", eval_json="", load_checkpoint_path="", seq_length=384): """ do eval """ if load_checkpoint_path == "": raise ValueError( "Finetune model missed, evaluation task must load finetune model!") tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples(eval_json, False) eval_features = convert_examples_to_features(examples=eval_examples, tokenizer=tokenizer, max_seq_length=seq_length, doc_stride=128, max_query_length=64, is_training=False, output_fn=None, verbose_logging=False) net = BertSquad(bert_net_cfg, False, 2) net.set_train(False) param_dict = load_checkpoint(load_checkpoint_path) load_param_into_net(net, param_dict) model = Model(net) output = [] RawResult = collections.namedtuple( "RawResult", ["unique_id", "start_logits", "end_logits"]) columns_list = ["input_ids", "input_mask", "segment_ids", "unique_ids"] for data in dataset.create_dict_iterator(): input_data = [] for i in columns_list: input_data.append(Tensor(data[i])) input_ids, input_mask, segment_ids, unique_ids = input_data start_positions = Tensor([1], mstype.float32) end_positions = Tensor([1], mstype.float32) is_impossible = Tensor([1], mstype.float32) logits = model.predict(input_ids, input_mask, segment_ids, start_positions, end_positions, unique_ids, is_impossible) ids = logits[0].asnumpy() start = logits[1].asnumpy() end = logits[2].asnumpy() for i in range(bert_net_cfg.batch_size): unique_id = int(ids[i]) start_logits = [float(x) for x in start[i].flat] end_logits = [float(x) for x in end[i].flat] output.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) write_predictions(eval_examples, eval_features, output, 20, 30, True, "./predictions.json", None, None)
def test_eval(): """Evaluation function for SQuAD task""" tokenizer = tokenization.FullTokenizer(vocab_file="./vocab.txt", do_lower_case=True) input_file = "dataset/v1.1/dev-v1.1.json" eval_examples = read_squad_examples(input_file, False) eval_features = convert_examples_to_features(examples=eval_examples, tokenizer=tokenizer, max_seq_length=384, doc_stride=128, max_query_length=64, is_training=False, output_fn=None, verbose_logging=False) device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=device_id) dataset = get_squad_dataset(bert_net_cfg.batch_size, 1) net = BertSquad(bert_net_cfg, False, 2) net.set_train(False) param_dict = load_checkpoint(cfg.finetune_ckpt) load_param_into_net(net, param_dict) model = Model(net) output = [] RawResult = collections.namedtuple( "RawResult", ["unique_id", "start_logits", "end_logits"]) columns_list = ["input_ids", "input_mask", "segment_ids", "unique_ids"] for data in dataset.create_dict_iterator(): input_data = [] for i in columns_list: input_data.append(Tensor(data[i])) input_ids, input_mask, segment_ids, unique_ids = input_data start_positions = Tensor([1], mstype.float32) end_positions = Tensor([1], mstype.float32) is_impossible = Tensor([1], mstype.float32) logits = model.predict(input_ids, input_mask, segment_ids, start_positions, end_positions, unique_ids, is_impossible) ids = logits[0].asnumpy() start = logits[1].asnumpy() end = logits[2].asnumpy() for i in range(bert_net_cfg.batch_size): unique_id = int(ids[i]) start_logits = [float(x) for x in start[i].flat] end_logits = [float(x) for x in end[i].flat] output.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) write_predictions(eval_examples, eval_features, output, 20, 30, True, "./predictions.json", None, None, False, False)
def run_squad(): """run squad task""" parser = argparse.ArgumentParser(description="run squad") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], help="Device type, default is Ascend") parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"], help="Eable train, default is false") parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"], help="Eable eval, default is false") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--epoch_num", type=int, default=3, help="Epoch number, default is 1.") parser.add_argument("--num_class", type=int, default=2, help="The number of class, default is 2.") parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"], help="Enable train data shuffle, default is true") parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"], help="Enable eval data shuffle, default is false") parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32") parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1") parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path") parser.add_argument("--eval_json_path", type=str, default="", help="Evaluation json file path, can be eval.json") parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path") parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path") parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path") parser.add_argument("--train_data_file_path", type=str, default="", help="Data path, it is better to use absolute path") parser.add_argument("--schema_file_path", type=str, default="", help="Schema path, it is better to use absolute path") args_opt = parser.parse_args() epoch_num = args_opt.epoch_num load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower( ) == "false": raise ValueError( "At least one of 'do_train' or 'do_eval' must be true") if args_opt.do_train.lower( ) == "true" and args_opt.train_data_file_path == "": raise ValueError( "'train_data_file_path' must be set when do finetune task") if args_opt.do_eval.lower() == "true": if args_opt.vocab_file_path == "": raise ValueError( "'vocab_file_path' must be set when do evaluation task") if args_opt.eval_json_path == "": raise ValueError( "'tokenization_file_path' must be set when do evaluation task") target = args_opt.device_target if target == "Ascend": context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) elif target == "GPU": context.set_context(mode=context.GRAPH_MODE, device_target="GPU") if bert_net_cfg.compute_type != mstype.float32: logger.warning('GPU only support fp32 temporarily, run with fp32.') bert_net_cfg.compute_type = mstype.float32 else: raise Exception("Target error, GPU or Ascend is supported.") netwithloss = BertSquad(bert_net_cfg, True, 2, dropout_prob=0.1) if args_opt.do_train.lower() == "true": ds = create_squad_dataset( batch_size=args_opt.train_batch_size, repeat_count=1, data_file_path=args_opt.train_data_file_path, schema_file_path=args_opt.schema_file_path, do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num) if args_opt.do_eval.lower() == "true": if save_finetune_checkpoint_path == "": load_finetune_checkpoint_dir = _cur_dir else: load_finetune_checkpoint_dir = make_directory( save_finetune_checkpoint_path) load_finetune_checkpoint_path = LoadNewestCkpt( load_finetune_checkpoint_dir, ds.get_dataset_size(), epoch_num, "squad") if args_opt.do_eval.lower() == "true": from src import tokenization from src.create_squad_data import read_squad_examples, convert_examples_to_features from src.squad_get_predictions import write_predictions from src.squad_postprocess import SQuad_postprocess tokenizer = tokenization.FullTokenizer( vocab_file=args_opt.vocab_file_path, do_lower_case=True) eval_examples = read_squad_examples(args_opt.eval_json_path, False) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=bert_net_cfg.seq_length, doc_stride=128, max_query_length=64, is_training=False, output_fn=None, vocab_file=args_opt.vocab_file_path) ds = create_squad_dataset( batch_size=args_opt.eval_batch_size, repeat_count=1, data_file_path=eval_features, schema_file_path=args_opt.schema_file_path, is_training=False, do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) outputs = do_eval(ds, load_finetune_checkpoint_path, args_opt.eval_batch_size) all_predictions = write_predictions(eval_examples, eval_features, outputs, 20, 30, True) SQuad_postprocess(args_opt.eval_json_path, all_predictions, output_metrics="output.json")