def Cv_singles(self,alpha_sets): """ returns the single Cvs """ CvSingle = np.zeros((self.nsubsets,self.T.size)) for i in xrange(self.nsubsets): CvSingle[i][:] = compute_alpha_cv_c(self.E, np.array(alpha_sets[i][:]), float(P), self.K, float(self.Tmin), float(self.Tmax), self.nT, float(self.ndof), self.imp, self.live) #print 'CvSingle ',CvSingle return np.array(CvSingle)
def jack_Cv_averages(self, alphaJack): """ returns the M(=self.nsubsets) Cv Jackknife averages """ CvJack = np.zeros((self.nsubsets, self.nT)) for i in xrange(self.nsubsets): CvJack[i][:] = compute_alpha_cv_c(self.E , np.array(alphaJack[i][:]), float(P), self.K, float(self.Tmin), float(self.Tmax), self.nT, float(self.ndof), self.imp, self.live) #print 'CvJack ',CvJack return np.array(CvJack)
def Cv_singles(self, alpha_sets): """ returns the single Cvs """ CvSingle = np.zeros((self.nsubsets, self.T.size)) for i in xrange(self.nsubsets): CvSingle[i][:] = compute_alpha_cv_c(self.E, np.array(alpha_sets[i][:]), float(P), self.K, float(self.Tmin), float(self.Tmax), self.nT, float(self.ndof), self.imp, self.live) #print 'CvSingle ',CvSingle return np.array(CvSingle)
def jack_Cv_averages(self, alphaJack): """ returns the M(=self.nsubsets) Cv Jackknife averages """ CvJack = np.zeros((self.nsubsets, self.nT)) for i in xrange(self.nsubsets): CvJack[i][:] = compute_alpha_cv_c(self.E, np.array(alphaJack[i][:]), float(P), self.K, float(self.Tmin), float(self.Tmax), self.nT, float(self.ndof), self.imp, self.live) #print 'CvJack ',CvJack return np.array(CvJack)