from __future__ import division import numpy as np from src.data_interface import trd suc = 0 for t in trd.trial_id_list: v = trd.get_trial(t).IsAlert.view() if v.min() == v.max() == 0: suc += 1 print suc/len(trd.trial_id_list)
import numpy as np import matplotlib.pyplot as plt from src.utils2 import get_path from src.data_interface import trd, L path = get_path(__file__) + '/..' for fname in L[2:]: for tid in trd.trial_id_list: v = trd.get_trial(tid).get_feature(fname).view() plt.plot(range(len(v)), v, 'b-', alpha=0.1) ax = plt.gca() ax.set_xlim(0,1200) ax.set_xlabel('Observation number') ax.set_ylabel(fname) ax.set_title('{0} in 500 trials overlayed'.format(fname)) plot_path = '{0}/plots/naive_{1}.'.format(path, fname) plt.savefig(plot_path + 'png', format='png', dpi=300) plt.savefig(plot_path + 'pdf', format='pdf') plt.cla()
import matplotlib.pyplot as plt import numpy as np from src.data_interface import trd from src.utils2 import get_path path = get_path(__file__) + '/..' trials = trd.trial_id_list means = [trd.get_trial(i).get_feature('V1').view().mean() for i in trials] plt.title('Mean pr. trial of feature V1') plt.plot(range(len(trials)), means) plt.gca().set_xticklabels(trials) plt.savefig('{0}/plots/mean_pr_trial_v1.pdf'.format(path), format="pdf") plt.cla()
from json import dump import numpy as np from src.data_interface import trd, L from src.utils import get_path sess_root = get_path(__file__) + '/..' features_to_calculate = L[2:] trials = list(trd.trial_id_list) calculations = {} for feature_name in features_to_calculate: tmp = {"trial_results": {}} for trial_id in trials: unique_values = np.unique( trd.get_trial(trial_id).get_feature(feature_name).view()) tmp["trial_results"][trial_id] = unique_values.size tmp["max"] = max(tmp["trial_results"].values()) tmp["min"] = min(tmp["trial_results"].values()) calculations[feature_name] = tmp f = open(sess_root + '/src/unique_values_pr_trial.json', 'w') dump(calculations, f, indent=4) f.close()