コード例 #1
0
    def test_simple(self):
        M = np.array([
            [0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0.25, 0, 0, 0, 0, 0, 0, 0, 0],
            [0.1, 0, 0, 0, 0, 0, 0, 0, 0],
            [0.05, 0, 0, 0, 0, 0, 0, 0, 0],
            [0.1, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0.2, 0, 0.05, 0.1, 0.15],
            [0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0, 0]
        ])

        expected = np.array([
            [0, 0, 0, 0, 1, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0],
            [0, 0, 0, 1, 1, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0, 0, 0],
            [1, 1, 1, 0, 0, 1, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 1, 0],
            [0, 0, 0, 0, 0, 0, 0, 1, 0],
            [0, 0, 0, 0, 0, 1, 1, 0, 1],
            [0, 0, 0, 0, 0, 0, 0, 1, 0],
        ])
        
        G = nx.from_numpy_matrix(M, create_using=nx.DiGraph)
        ut.normalizeGraph(G)

        expectedG = nx.from_numpy_matrix(expected)
        ut.normalizeGraph(G)

        resG = tr.treeToBND(M)
        N = nx.to_numpy_matrix(resG)
        np.testing.assert_array_equal(expected, N)

        dr.printInput(G)
        dr.printRes(G, resG, expectedG)
コード例 #2
0
    def test_simple(self):
        M = np.array([
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0.1, 0, 0, 0, 0, 0, 0, 0],
            [0.15, 0, 0, 0, 0, 0, 0, 0],
            [0.05, 0, 0, 0, 0, 0, 0, 0],
            [0.1, 0, 0, 0, 0, 0.05, 0.35, 0.2],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0]
        ])

        expected = np.array([
            [0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 1, 0, 1],
            [1, 1, 0, 1, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 1],
            [0, 1, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 1],
            [0, 1, 0, 0, 1, 0, 1, 0],
        ])

        G = nx.from_numpy_matrix(M, create_using=nx.DiGraph)
        ut.normalizeGraph(G)

        expectedG = nx.from_numpy_matrix(expected)
        ut.normalizeGraph(G)

        res = sp.sparseToBND(G)
        resG, layers = res[0], res[1]
        N = nx.to_numpy_matrix(resG)

        dr.printInput(G)
        dr.printRes(G, resG, expectedG, layers)
        np.testing.assert_array_equal(expected, N)
コード例 #3
0
    return G


choice = 1

### a simple random graph
if choice == 0:
    n = 20
    G = randomGraph(n)

    dr.printInput(G)
    res = sp.sparseToBND(G)
    N, layers = res[0], res[1]

    dr.printRes(G, N, None, layers)

### Several test on random graphs
if choice == 1:
    N, n = 100000, 20

    results = []

    inputs = []
    for i in tqdm(range(N)):
        G = randomGraph(n)
        edges = str(G.edges)
        avgDegree = ev.getAverageDegree(G)
        n = len(G)

        res = sp.sparseToBND(G)
コード例 #4
0
print('(1) one single highland graph')
print('(2) all highlands graphs with a given number of nodes')
choice = int(input('Your choice: '))

### Simple Test ###
if choice == 1:
    n = int(input('How many nodes ? '))
    m = int(input('Degree of the highland nodes ? '))
    print(n, m)
    G = highlands(n, m)

    dr.printInput(G)
    res = sp.sparseToBND(G)
    N = res[0]

    dr.printRes(G, N, None)

### All tests ###
elif choice == 2:
    n = int(input('How many nodes ? '))
    EPLs = np.zeros(n)
    maxs = np.zeros(n)

    for m in range(n):
        _m = m+1
        G = highlands(n, _m)
        res = sp.sparseToBND(G)
        N = res[0]
        EPL = ev.getEPL(G, N)
        _max = ev.getMaxDegree(N)
        EPLs[m] = EPL
コード例 #5
0

choice = 4

### Simple Test for one wheel ###
if choice == 0:
    n = 10
    center = 0
    nodes = np.array([i for i in range(n)])

    G = simpleWheel(nodes, center, direction=ut.Direction.OUTGOING)

    dr.printInput(G)
    res = sp.sparseToBND(G)

    dr.printRes(G, res[0], None, res[1])

### Simple Test for several wheels ###
elif choice == 1:
    n = 10
    nodes = np.array([i for i in range(n)])
    highOutSubsets = [0]
    highInSubsets = [5]

    G = severalWheels(nodes, highOutSubsets, highInSubsets)

    dr.printInput(G)
    res = sp.sparseToBND(G)
    N, layers = res[0], res[1]

    dr.printRes(G, N, None, layers)