def imperfect_features_test(): from src.env.Amatrix_task import Amatrix n = 4 m = 2 env = Amatrix(n, m) features = env.get_approx_A() # first m features weights = np.random.rand(m) config = Config() config.parameter_size = m config.init_alpha = 0.001 adam = Adam(config) sample_size = 50000 for i in range(sample_size): rand_row = np.random.randint(n) target = env.sample_target(rand_row, noisy=True) pred_features = features[rand_row, :] prediction = np.dot(pred_features, weights) error = target - prediction gradient, new_stepsize, new_weight_vector = adam.update_weight_vector( error, pred_features, weights) weights = new_weight_vector print("Sample number: {0}".format(i + 1)) print("\tPrediction error:{0}".format(error)) print("Theta star:\n{0}".format(env.theta_star)) print("Estimated theta:\n{0}".format(weights))
def perfect_features_test(): from src.env.Amatrix_task import Amatrix n = 20 m = 3 env = Amatrix(n, m) features = env.Amatrix # perfect features weights = np.random.rand(n) config = Config() config.parameter_size = n config.init_alpha = 0.001 adam = Adam(config) sample_size = 100000 for i in range(sample_size): rand_row = np.random.randint(n) target = env.sample_target(rand_row, noisy=True) pred_features = features[rand_row, :] prediction = np.dot(pred_features, weights) error = target - prediction gradient, new_stepsize, new_weight_vector = adam.update_weight_vector( error, pred_features, weights) weights = new_weight_vector if (i + 1) % 10000 == 0: print("Sample number: {0}".format(i + 1)) print("\tPrediction error:{0}".format(error)) print("Theta star:\n{0}".format(env.theta_star)) print("Estimated theta:\n{0}".format(weights)) difference = np.sqrt(np.sum(np.square(env.theta_star - weights))) print("L2 norm of difference:\n{0}".format(difference))
def adding_bad_features_test(): from src.env.Amatrix_task import Amatrix n = 10 m = 5 env = Amatrix(n, m) features = env.get_approx_A() # first m features weights = np.zeros(m) config = Config() config.parameter_size = m config.theta = 0.1 config.init_beta = np.log(0.0001) idbd = SIDBD(config) sample_size = 50000 additional_features = 30 for k in range(additional_features + 1): print("Number of features in the representation: {0}".format( idbd.parameter_size)) for i in range(sample_size): rand_row = np.random.randint(n) target = env.sample_target(rand_row, noisy=True) pred_features = features[rand_row, :] prediction = np.dot(pred_features, weights) error = target - prediction gradient, new_stepsize, new_weight_vector = idbd.update_weight_vector( error, pred_features, weights) weights = new_weight_vector if ((i + 1) % 25000) == 0: print("\tSample number: {0}".format(i + 1)) print("\t\tPrediction error: {0}".format(error)) print("Theta star:\n{0}".format(env.theta_star)) print("Estimated theta:\n{0}".format(weights)) if k < additional_features: print("Adding new feature...") new_feature = env.get_new_bad_features(1) features = np.hstack((features, new_feature)) idbd.increase_size(1) new_weights = np.zeros(m + 1) new_weights[:m] = weights m += 1 weights = new_weights