def execute_experiment(features_hypers1, features_hypers2):
    experiment_id, gfre_vec = gfr_pairwise_experiment(dataset_name,
                                                      nb_samples,
                                                      features_hypers1,
                                                      features_hypers2,
                                                      two_split=two_split,
                                                      train_ratio=train_ratio,
                                                      seed=seed,
                                                      noise_removal=False,
                                                      regularizer=regularizer,
                                                      compute_distortion=False,
                                                      one_direction=True)
    experiment_ids.append(experiment_id)
    print(gfre_vec)
    }
}]

for nb_local_envs in nbs_local_envs:
    hash_value = lfre_pairwise_experiment(dataset_name,
                                          nb_samples,
                                          features_hypers1,
                                          features_hypers2,
                                          nb_local_envs,
                                          two_split,
                                          seed,
                                          train_ratio,
                                          regularizer,
                                          inner_epsilon,
                                          outer_epsilon,
                                          one_direction=False)
    experiment_ids.append(hash_value)
    print(f"nb_local_envs={nb_local_envs} hash_value={hash_value}")
print(experiment_ids)
hash_value, _ = gfr_pairwise_experiment(dataset_name,
                                        nb_samples,
                                        features_hypers1,
                                        features_hypers2,
                                        two_split=two_split,
                                        train_ratio=train_ratio,
                                        seed=seed,
                                        noise_removal=False,
                                        regularizer=regularizer,
                                        compute_distortion=False)
print(f"GFRE={hash_value}")
コード例 #3
0
                "interaction_cutoff": cutoff,
                "max_radial": max_radial,
                "max_angular": max_angular,
                "gaussian_sigma_constant": sigma,
                "gaussian_sigma_type": "Constant",
                "cutoff_smooth_width": cutoff_smooth_width,
                "normalize": normalize
            }
        } for max_radial, max_angular in max_radials_angulars]

        hash_value, _ = gfr_pairwise_experiment(
            dataset_name,
            nb_samples,
            features_hypers1,
            features_hypers2,
            two_split=two_split,
            train_ratio=train_ratio,
            seed=seed,
            noise_removal=False,
            regularizer=regularizer,
            set_methane_dataset_to_same_species=False)

        hash_values.append(hash_value)

    print('"' + ' '.join(hash_values).replace(' ', '" "') + '" ')
    print(f"soap_{dataset_name}_hash_value = " + '[' + '"' +
          ' '.join(hash_values).replace(' ', '", "') + '"]')

    hash_values = []
    for feature_count in feature_counts:
        features_hypers1 = [{