def evaluate(embeddings, actual_issame, nrof_folds=10, distance_metric=0, subtract_mean=False): # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) thresholds = np.arange(0, 4, 0.001) val, val_std, far = facenet.calculate_val(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean) return tpr, fpr, accuracy, val, val_std, far
def _evaluate(embeddings, actual_issame, nrof_folds=10): # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds) thresholds = np.arange(0, 4, 0.001) val, val_std, far = facenet.calculate_val(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds) return tpr, fpr, accuracy, val, val_std, far
def evaluate(embeddings, actual_issame, nrof_folds=10): # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) embeddings1 = embeddings[0::2] # 6000张图片 是每一个Paris中的第一张 embeddings2 = embeddings[1::2] # 6000张图片 是每一个Paris中的第2张 # 计算roc曲线需要的数据和在测试数据上的每一折的测试精度 tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds) thresholds = np.arange(0, 4, 0.001) # 计算验证率 val, val_std, far = facenet.calculate_val(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds) return tpr, fpr, accuracy, val, val_std, far