コード例 #1
0
def construct_model(args):
    kg = KnowledgeGraph(args)
    if args.model.endswith('.gc'):
        kg.load_fuzzy_facts()
    fn = ConvE(args, kg.num_entities)
    lf = EmbeddingBasedMethod(args, kg, fn)
    return lf
コード例 #2
0
ファイル: experiments.py プロジェクト: xiandshi/DacKGR
def construct_model(args):
    """
    Construct NN graph.
    """
    kg = KnowledgeGraph(args)
    if args.model.endswith('.gc'):
        kg.load_fuzzy_facts()

    if args.model in ['point', 'point.gc']:
        pn = GraphSearchPolicy(args)
        lf = PolicyGradient(args, kg, pn)
    elif args.model.startswith('point.rs'):
        fn_model = args.model.split('.')[2]
        fn_args = copy.deepcopy(args)
        fn_args.model = fn_model
        fn_args.relation_only = False
        if fn_model == 'complex':
            fn = ComplEx(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'distmult':
            fn = DistMult(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'conve':
            fn = ConvE(fn_args, kg.num_entities)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'tucker':
            fn = TuckER(fn_args, kg.num_entities)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'PTransE':
            fn = PTransE(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        pn = GraphSearchPolicy(args, fn_kg=fn_kg, fn=fn)
        lf = RewardShapingPolicyGradient(args, kg, pn, fn_kg, fn)
    elif args.model == 'complex':
        fn = ComplEx(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'distmult':
        fn = DistMult(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'tucker':
        fn = TuckER(args, kg.num_entities)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'conve':
        fn = ConvE(args, kg.num_entities)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'TransE':
        fn = TransE(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'PTransE':
        fn = PTransE(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    else:
        raise NotImplementedError
    return lf
コード例 #3
0
ファイル: experiments.py プロジェクト: otiliastr/coper
def construct_model(args):
    """
    Construct NN graph.
    """
    kg = KnowledgeGraph(args)
    if args.model.endswith('.gc'):
        kg.load_fuzzy_facts()

    if args.model in ['point', 'point.gc']:
        pn = GraphSearchPolicy(args)
        parameters = pn.named_parameters()
        for name, value in parameters:
            print('parameter: {} | size: {}'.format(name, value.size()))
        # print('pn parameters: {}'.format(pn.named_parameters()))
        #print(args.device_ids)
        #print(type(args.device_ids[0]))
        #lf = nn.DataParallel(PolicyGradient(args, kg, pn), device_ids=args.device_ids)
        lf = PolicyGradient(args, kg, pn)
    elif args.model.startswith('point.rs'):
        pn = GraphSearchPolicy(args)
        fn_model = args.model.split('.')[2]
        fn_args = copy.deepcopy(args)
        fn_args.model = fn_model
        fn_args.relation_only = False
        if fn_model == 'complex':
            fn = ComplEx(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'distmult':
            fn = DistMult(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'conve':
            fn = ConvE(fn_args, kg.num_entities)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == 'cpg-conve':
            fn = CPG_ConvE(fn_args, kg.num_entities)
            fn_kg = KnowledgeGraph(fn_args)
        lf = RewardShapingPolicyGradient(args, kg, pn, fn_kg, fn)
    elif args.model == 'complex':
        fn = ComplEx(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'distmult':
        fn = DistMult(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'conve':
        fn = ConvE(args, kg.num_entities)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == 'cpg-conve':
        fn = CPG_ConvE(args, kg.num_entities)
        lf = EmbeddingBasedMethod(args, kg, fn)
    else:
        raise NotImplementedError
    return lf
コード例 #4
0
def construct_model(args):
    """
    Construct NN graph.
    """
    kg = KnowledgeGraph(args)  # NOTE: initialize a KG instance
    if args.model.endswith(
            ".gc"):  # CAVEAT: not sure what model needs fuzzy facts
        kg.load_fuzzy_facts()

    if args.model in ["point", "point.gc"]:
        pn = GraphSearchPolicy(args)
        lf = PolicyGradient(args, kg, pn)
    elif args.model.startswith("point.rs"):
        pn = GraphSearchPolicy(args)
        fn_model = args.model.split(".")[-1]
        fn_args = copy.deepcopy(args)
        fn_args.model = fn_model
        fn_args.relation_only = False
        if fn_model == "complex":
            fn = ComplEx(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == "distmult":
            fn = DistMult(fn_args)
            fn_kg = KnowledgeGraph(fn_args)
        elif fn_model == "conve":
            fn = ConvE(fn_args, kg.num_entities)
            fn_kg = KnowledgeGraph(fn_args)
        lf = RewardShapingPolicyGradient(args, kg, pn, fn_kg, fn)
    elif args.model == "complex":
        fn = ComplEx(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == "distmult":
        print("jxtu: embedding model: distmult")
        fn = DistMult(args)
        lf = EmbeddingBasedMethod(
            args, kg, fn)  # NOTE: embedding-based learning framework
    elif args.model == "conve":
        fn = ConvE(args, kg.num_entities)
        lf = EmbeddingBasedMethod(args, kg, fn)
    elif args.model == "TransE":
        fn = TransE(args)
        lf = EmbeddingBasedMethod(args, kg, fn)
    else:
        raise NotImplementedError
    return lf