コード例 #1
0
    def test_calculate_output_dims_with_invalid_padding_value(self):
        # given
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        padding = "lorem ipsum"

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        with pytest.raises(InvalidPaddingModeError):
            _ = layer.calculate_output_dims((32, 11, 11, 3))
コード例 #2
0
    def test_calculate_pad_width_with_invalid_padding_value(self):
        # given
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        padding = 'lorem ipsum'

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        with pytest.raises(InvalidPaddingModeError):
            _ = layer.calculate_pad_dims()
コード例 #3
0
    def test_forward_pass_with_invalid_padding_value(self):
        # given
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        activation = np.random.rand(16, 11, 11, 3)
        padding = 'lorem ipsum'

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        with pytest.raises(InvalidPaddingModeError):
            _ = layer.forward_pass(activation, training=True)
コード例 #4
0
    def test_calculate_output_dims_with_same_padding_symmetrical(self):
        # given
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        padding = 'same'

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        result = layer.calculate_output_dims((32, 11, 11, 3))

        # then
        assert result == (32, 11, 11, 16)
コード例 #5
0
    def test_calculate_pad_width_with_same_padding_asymmetrical(self):
        # given
        w = np.random.rand(5, 7, 3, 16)
        b = np.random.rand(16)
        padding = 'same'

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        result = layer.calculate_pad_dims()

        # then
        assert result == (2, 3)
コード例 #6
0
    def test_calculate_pad_width_with_valid_padding(self):
        # given
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        padding = 'valid'

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        result = layer.calculate_pad_dims()

        # then
        assert result == (0, 0)
コード例 #7
0
    def test_calculate_output_dims_with_valid_padding_asymmetrical(self):
        # given
        w = np.random.rand(3, 5, 3, 16)
        b = np.random.rand(16)
        padding = "valid"

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        result = layer.calculate_output_dims((32, 11, 11, 3))

        # then
        assert result == (32, 9, 7, 16)
コード例 #8
0
    def test_pad_symmetrical(self):
        # given
        array = np.random.rand(100, 28, 28, 3)
        pad = 3, 3

        # when
        result = ConvLayer2D.pad(array=array, pad=pad)

        # then
        print(result.sum())
        print(array.sum())
        assert result.shape == (100, 34, 34, 3)
        assert abs(result.sum() - array.sum()) < 1e-8
コード例 #9
0
    def test_backward_pass_only_size_valid_padding(self):
        # given
        activation = np.random.rand(64, 11, 11, 3)
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        layer = ConvLayer2D(w=w, b=b, padding='valid')

        # when
        forward_result = layer.forward_pass(activation, training=True)
        backward_result = layer.backward_pass(forward_result)

        # then
        assert backward_result.shape == activation.shape
コード例 #10
0
    def test_forward_pass_with_valid_padding(self):
        # given
        w = np.random.rand(5, 5, 3, 16)
        b = np.random.rand(16)
        activation = np.random.rand(16, 11, 11, 3)
        padding = 'valid'

        # when
        layer = ConvLayer2D(w=w, b=b, padding=padding)
        result = layer.forward_pass(activation, training=True)

        assert result.shape == (16, 7, 7, 16)
        expected_val = np.sum(
            w[:, :, :, 0] * activation[0, 0:5, 0:5, :]) + b[0]
        assert abs(expected_val - result[0, 0, 0, 0]) < 1e-8
コード例 #11
0
import numpy as np
import pytest

from src.errors import InvalidPaddingModeError
from src.layers.convolutional import ConvLayer2D, FastConvLayer2D, SuperFastConvLayer2D

if __name__ == "__main__":
    w = np.random.rand(5, 5, 3, 16)
    b = np.random.rand(16)
    conv_layer = ConvLayer2D(w, b)
    print(conv_layer)