from src.main.model.regression.linearRegression import LinearRegression from src.main.model.model import Config, Parameters import tensorflow as tf from src.main.dataset.inputdata import regression_data from src.main.model.functions.regularization import Ridge # model configurations config = Config(feature_num=2, batch_size=500, learning_rate=0.01, epoche=500) # dataset dataset = regression_data(TRUE_W=[[17.0], [4]], TRUE_b=4, NUM_EXAMPLES=10000, batch_size=1000) # implemented model sess = tf.Session() lr = LinearRegression(dataset=dataset, config=config, parameters=Parameters()) sess.run(tf.global_variables_initializer()) lr.training(session=sess) print(sess.run(lr.weights))
model.final_state, model.optimization], feed_dict={feature: X, target: Y, init_state: training_state}) training_loss += training_loss_ if step % 100 == 0 and step > 0: if verbose: print("Average loss at step", step, "for last 250 steps:", training_loss / 100) training_losses.append(training_loss / 100) training_loss = 0 return training_losses if __name__ == '__main__': configuration = Config(feature_num=1, batch_size=batch_size, epoche=20, learning_rate=learning_rate, min_learning_rate=learning_rate, num_layers=1, num_unrollings=1, num_classes=num_classes, num_nodes=1, dropout=0.1, state_size=state_size, num_steps=num_steps) training_losses = main(config=configuration, num_epochs=1, num_steps=num_steps) plt.plot(training_losses) plt.show()
from src.main.model.classification.logisticRegression import LogisticRegression from src.main.model.model import Config, Parameters import tensorflow as tf from src.main.dataset.inputdata import classification_data # model configurations config = Config(feature_num=10, batch_size=50, learning_rate=0.01) # dataset NUM_EXAMPLES=10000 dataset = classification_data(batch_size=1000, n_samples=NUM_EXAMPLES, n_features=10) # model sess = tf.Session() model = LogisticRegression(dataset=dataset, config=config, parameters=Parameters()) sess.run(tf.global_variables_initializer()) model.training(session=sess) print(sess.run([model.weights, model.bias])) print(sess.run(model.accuracy))