), n_channels=n_channels ) # xy_mask = Mask3D.unmasked( # shape_3d=grid_3d.shape_3d, # pixel_scales=grid_3d.pixel_scales, # sub_size=grid_3d.sub_size, # ) xy_mask = Mask3D.manual( mask_2d=al.Mask.circular( shape_2d=grid_3d.shape_2d, pixel_scales=grid_3d.pixel_scales, sub_size=grid_3d.sub_size, radius=2.5, centre=(0.0, 0.0) ), z_mask=np.full( shape=grid_3d.shape_3d[0], fill_value=False ), ) #exit() transformers = [] for i in range(uv_wavelengths.shape[0]): transformer = transformer_class( uv_wavelengths=uv_wavelengths[i], grid=aa.structures.grids.MaskedGrid.from_mask( mask=xy_mask.mask_2d ).in_radians
upper_limit=100.0) phase_folders = [ string_utils.remove_substring_from_end_of_string( string=os.path.basename(__file__), substring=".py") ] phase_1 = phase.Phase( phase_name="phase_1__version_{}".format(autolens_version), phase_folders=phase_folders, profiles=af.CollectionPriorModel( lens=lens_model, src_model=src_model, ), lens_redshift=lens_redshift, source_redshift=source_redshift, ) phase_1.optimizer.const_efficiency_mode = True phase_1.optimizer.n_live_points = 100 phase_1.optimizer.sampling_efficiency = 0.2 phase_1.optimizer.evidence_tolerance = 0.5 xy_mask = Mask3D.unmasked( shape_3d=grid_3d.shape_3d, pixel_scales=grid_3d.pixel_scales, sub_size=grid_3d.sub_size, ) phase_1.run(dataset=dataset, xy_mask=xy_mask)