k=8, hash_ids=int(2e5), batch_size=args.b, # 1024 optimizer="adam", learning_rate=0.001, num_display_steps=250, num_eval_steps=1000, epoch=1, metric='auc', activation=['relu', 'relu', 'relu'], cross_activation='identity', init_method='uniform', init_value=0.1, feature_nums=len(features), kfold=5) utils.print_hparams(hparam) # # Training model # In[6]: kfold = KFold(n_splits=hparam.kfold, shuffle=True, random_state=712) for i, (train_index, dev_index) in enumerate(kfold.split(train)): print('Fold', i) model = ctrNet.build_model(hparam) model.train(train_data=(train.iloc[train_index][features], train.iloc[train_index]['HasDetections']), dev_data=(train.iloc[dev_index][features], train.iloc[dev_index]['HasDetections'])) print("Training Done! Inference...")
k=8, hash_ids=int(2e5), batch_size=1024, optimizer="adam", learning_rate=0.001, num_display_steps=1000, num_eval_steps=1000, epoch=1, metric='auc', activation=['relu', 'relu', 'relu'], cross_activation='identity', init_method='uniform', init_value=0.1, feature_nums=train.shape[1], kfold=5) misc_utils.print_hparams(hparam) #======================================================================== #======================================================================== # Result Box model_list = [] result_list = [] score_list = [] val_pred_list = [] oof_pred = np.zeros(train.shape[0]) y_test = np.zeros(x_test.shape[0]) #======================================================================== model_type = 'NN'