コード例 #1
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    # dataset:数据集名称MNIST/CIFAR10
    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # 获取训练的超参数,获取模型,划分训练集和验证集
    # training_parameters:训练超参数
    # model_framework:网络
    # train_loader:训练集
    # valid_loader:验证集
    if dataset == 'MNIST':
        training_parameters = MNIST_Training_Parameters
        model_framework = MNIST_CNN().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_mnist_train_validate_loader(
            dir_name='../data/MNIST/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
    else:
        training_parameters = CIFAR10_Training_Parameters
        model_framework = ResNet18().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_cifar10_train_validate_loader(
            dir_name='../data/CIFAR10/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
    # defense_name:防御名称
    # nat_params:对抗训练的参数
    defense_name = 'RAT9'
    rat9_params = {
        'epsilon': args.epsilon,
        'adv_ratio': args.adv_ratio,
        'mean': args.mean,
        'std': args.std,
        'eps_mu': args.eps_mu,
        'eps_sigma': args.eps_sigma,
        'clip_eps_min': args.clip_eps_min,
        'clip_eps_max': args.clip_eps_max
    }
    # 将参数传入RAT9防御中
    rat9 = RAT9Defense(model=model_framework,
                       defense_name=defense_name,
                       dataset=dataset,
                       training_parameters=training_parameters,
                       device=device,
                       **rat9_params)
    # 进行对抗训练
    rat9.defense(train_loader=train_loader, validation_loader=valid_loader)
コード例 #2
0
 def defense_predication(self, DefenseModelDirs, defense_name, **kwargs):
     # DefenseModelDirs:防御模型所在位置
     # defense_name:防御名称(大写)
     re_train_defenses = {
         'NAT', 'RLT', 'RLT1', 'RLT2', 'RLT3', 'EAT', 'UAPAT', 'NEAT',
         'NRC', 'RAT', 'RAT1', 'RAT2', 'RAT3', 'RAT4', 'RAT5', 'RAT6',
         'RAT7', 'RAT8', 'RAT9', 'RAT10', 'RAT11', 'MART', 'NEW_MART',
         'NEW_MART1', 'NEW_MMA'
     }
     other_defenses = {'NRC'}
     defense_name = defense_name.upper().strip()
     assert defense_name in re_train_defenses or input_transformation_defenses or other_defenses
     # 如果是重新训练网络防御
     if defense_name in re_train_defenses:
         print(
             '\n##{}## defense is a kind of complete defenses that retrain the model'
             .format(defense_name))
         # 加载防御模型
         defended_model_location = '{}/{}/{}_{}_enhanced.pt'.format(
             DefenseModelDirs, defense_name, self.dataset, defense_name)
         defended_model = MNIST_CNN().to(
             self.device) if self.dataset == 'MNIST' else ResNet18().to(
                 self.device)
         defended_model.load(path=defended_model_location,
                             device=self.device)
         defended_model.eval()
         # 进行标签预测
         predication = predict(model=defended_model,
                               samples=self.adv_samples,
                               device=self.device)
         # 返回标签行向量
         labels = torch.argmax(predication, 1).cpu().numpy()
         return labels
     else:
         if defense_name == 'NRC':
             print(
                 '\n##{}## defense is a kind of region-based classification defenses ... '
                 .format(defense_name))
             from Defenses.DefenseMethods.NRC import NRCDefense
             num_points = 1000
             assert 'nrc_radius' in kwargs
             assert 'nrc_mean' in kwargs
             assert 'nrc_std' in kwargs
             radius = kwargs['nrc_radius']
             mean = kwargs['nrc_mean']
             std = kwargs['nrc_std']
             nrc = NRCDefense(model=self.raw_model,
                              defense_name='NRC',
                              dataset=self.dataset,
                              device=self.device,
                              num_points=num_points)
             labels = nrc.region_based_classification(
                 samples=self.adv_samples,
                 radius=radius,
                 mean=mean,
                 std=std)
             return labels
         else:
             raise ValueError('{} is not supported!!!'.format(defense_name))
コード例 #3
0
    def __init__(self,
                 DataSet='MNIST',
                 AttackName='LLC',
                 AdvExamplesDir='../AdversarialExampleDatasets/',
                 device=torch.device('cpu')):
        # DataSet:数据集名称
        # dataset:数据集名称(大写)
        # AttackName:攻击名称
        # attack_name:攻击名称(大写)
        # AdvExamplesDir:对抗性样本存放位置
        self.device = device
        assert DataSet.upper() in ['MNIST', 'CIFAR10'
                                   ], "The data set must be MNIST or CIFAR10"
        self.dataset = DataSet.upper()
        # raw_model:加载模型
        # ***********不同模型名称***********
        raw_model_location = '{}{}/model/{}_raw.pt'.format(
            '../data/', self.dataset, self.dataset)
        if self.dataset == 'MNIST':
            self.raw_model = MNIST_CNN().to(device)
            self.raw_model.load(path=raw_model_location, device=device)
        else:
            self.raw_model = ResNet18().to(device)
            self.raw_model.load(path=raw_model_location, device=device)
        self.raw_model.eval()
        self.attack_name = AttackName.upper()
        supported_un_targeted = [
            'FGSM', 'RFGSM', 'BIM', 'PGD', 'DEEPFOOL', 'UAP'
        ]
        supported_targeted = ['LLC', "RLLC", 'ILLC', 'JSMA', 'CW2']
        assert self.attack_name in supported_un_targeted or self.attack_name in supported_targeted, \
            "\nCurrently, our implementation support attacks of FGSM, RFGSM, BIM, UMIFGSM, DeepFool, LLC, RLLC, ILLC, TMIFGSM, JSMA, CW2,....\n"

        # 设置Targeted是目标攻击还是非目标攻击
        if self.attack_name.upper() in supported_un_targeted:
            self.Targeted = False
            print('the # {} # attack is a kind of Un-targeted attacks'.format(
                self.attack_name))
        else:
            self.Targeted = True
            print('the # {} # attack is a kind of Targeted attacks'.format(
                self.attack_name))

        # adv_samples,adv_labels,true_labels:加载对抗性样本,对抗性样本标签和真实标签
        self.adv_samples = np.load('{}{}/{}/{}_AdvExamples.npy'.format(
            AdvExamplesDir, self.attack_name, self.dataset,
            self.attack_name)).astype(np.float32)
        self.adv_labels = np.load('{}{}/{}/{}_AdvLabels.npy'.format(
            AdvExamplesDir, self.attack_name, self.dataset, self.attack_name))
        self.true_labels = np.load('{}{}/{}/{}_TrueLabels.npy'.format(
            AdvExamplesDir, self.attack_name, self.dataset, self.attack_name))

        # targets_samples:获取目标攻击的标签
        if self.attack_name.upper() in ['LLC', 'RLLC', 'ILLC']:
            self.targets_samples = np.load('{}{}/{}_llc.npy'.format(
                '../clean_datasets/', self.dataset, self.dataset))
        else:
            self.targets_samples = np.load('{}{}/{}_targets.npy'.format(
                '../clean_datasets/', self.dataset, self.dataset))
コード例 #4
0
def main(args):
    # Device configuration
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Set the random seed manually for reproducibility.
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # 获取MNIST/MNIST的训练参数、模型、训练集和验证集
    if dataset == 'MNIST':
        training_parameters = RLFAT_MNIST_Training_Parameters
        model_framework = MNIST_CNN().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_mnist_train_validate_loader(
            dir_name='../RawModels/MNIST/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
    else:
        training_parameters = RLFAT_CIFAR10_Training_Parameters
        model_framework = ResNet18().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_cifar10_train_validate_loader(
            dir_name='../RawModels/CIFAR10/',
            batch_size=batch_size,
            valid_size=0.1,
            augment=True,
            shuffle=True)
    # defense_name:防御名称
    defense_name = 'NewRLFAT1'
    # NewRLFAT1_params:防御参数
    NewRLFAT1_params = {
        'attack_step_num': args.attack_step_num,
        'step_size': args.step_size,
        'epsilon': args.epsilon,
        'k': args.k
    }
    # 将参数传入NewRLFAT1防御中
    NewRLFAT1 = NEWRLFAT1Defense(model=model_framework,
                                 defense_name=defense_name,
                                 dataset=dataset,
                                 training_parameters=training_parameters,
                                 device=device,
                                 **NewRLFAT1_params)
    # 利用NewRLFAT1进行防御
    NewRLFAT1.defense(train_loader=train_loader,
                      validation_loader=valid_loader)
コード例 #5
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Set the random seed manually for reproducibility.
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # 获取MNIST/MNIST的训练参数、模型、训练集和验证集
    if dataset == 'MNIST':
        training_parameters = MNIST_Training_Parameters
        model_framework = MNIST_CNN().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_mnist_train_validate_loader(
            dir_name='../data/MNIST/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
    else:
        training_parameters = CIFAR10_Training_Parameters
        model_framework = ResNet18().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_cifar10_train_validate_loader(
            dir_name='../data/CIFAR10/',
            batch_size=batch_size,
            valid_size=0.1,
            augment=True,
            shuffle=True)
    # defense_name:防御名称
    defense_name = 'NEW_MART2'
    # pat_params:防御参数
    new_mart2_params = {
        'attack_step_num': args.step_num,
        'step_size': args.step_size,
        'epsilon': args.eps,
        'lamda1': args.lamda1,
        'lamda2': args.lamda2
    }
    # 将参数传入NEW_MART2防御中
    new_mart2 = NEW_MART2Defense(model=model_framework,
                                 defense_name=defense_name,
                                 dataset=dataset,
                                 training_parameters=training_parameters,
                                 device=device,
                                 **new_mart2_params)
    # 利用NEW_MART2进行防御
    new_mart2.defense(train_loader=train_loader,
                      validation_loader=valid_loader)
コード例 #6
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    # 下载mnist训练集,划分为训练集和测试集(然后进行分组),保存到MNIST文件夹下面
    train_loader, valid_loader = get_mnist_train_validate_loader(dir_name='../data/MNIST', batch_size=MNIST_Training_Parameters['batch_size'],valid_size=0.1, shuffle=True)
    # 下载minst测试集(然后进行分组),保存到MNIST文件夹下面
    test_loader = get_mnist_test_loader(dir_name='../data/MNIST', batch_size=MNIST_Training_Parameters['batch_size'])
    # 设置模型
    # **************引入的模型名称**************
    mnist_model = MNIST_CNN().to(device)
    # 设置优化器
    optimizer = optim.SGD(mnist_model.parameters(), lr=MNIST_Training_Parameters['learning_rate'],
                          momentum=MNIST_Training_Parameters['momentum'], weight_decay=MNIST_Training_Parameters['decay'], nesterov=True)
    # 训练
    # 最好的验证集精度
    best_val_acc = None
    # 训练模型参数保存路径:/MNIST/model/MNIST_raw.pt
    # **************不同模型需要修改名称**************
    model_saver = '../data/MNIST/model/MART_MNIST_' + 'raw' + '.pt'
    # 进行epoch次循环训练
    for epoch in range(MNIST_Training_Parameters['num_epochs']):
        # 一次epoch训练
        train_one_epoch(model=mnist_model, train_loader=train_loader, optimizer=optimizer, epoch=epoch, device=device)
        # 验证集的精度
        val_acc = validation_evaluation(model=mnist_model, validation_loader=valid_loader, device=device)
        adjust_MNIST_learning_rate(optimizer=optimizer, epoch=epoch)
        # 每一次epoch后验证集的精度大于最好的精度时(移除模型保存路径),或者best_val_acc为None时,更新最佳精度,然后将模型参数重新写入保存路径中
        if not best_val_acc or round(val_acc, 4) >= round(best_val_acc, 4):
            if best_val_acc is not None:
                os.remove(model_saver)
            best_val_acc = val_acc
            mnist_model.save(name=model_saver)
        # 否则提示精度未发生提高
        else:
            print('Train Epoch{:>3}: validation dataset accuracy did not improve from {:.4f}\n'.format(epoch, best_val_acc))
    # 测试
    # 复制mnist_model
    final_model = copy.deepcopy(mnist_model)
    # 加载final_model
    final_model.load(path=model_saver, device=device)
    # 计算模型在测试集上面的精度并输出
    accuracy = testing_evaluation(model=final_model, test_loader=test_loader, device=device)
    # 打印模型在测试集上的精度
    print('Finally, the ACCURACY of saved model [{}] on testing dataset is {:.2f}%\n'.format(final_model.model_name, accuracy * 100.0))
コード例 #7
0
    def __init__(self,
                 DataSet='MNIST',
                 AttackName='FGSM',
                 RawModelLocation='../data/',
                 CleanDataLocation='../clean_datasets/',
                 AdvExamplesDir='../AdversarialExampleDatasets/',
                 device=torch.device('cpu')):
        # DataSet:数据集名称
        # dataset:数据集名称MNIST或CIFAR10
        # AttackName:攻击名称
        # attack_name:攻击名称
        # RawModelLocation:模型所在位置data/
        # CleanDataLocation:干净数据集所在位置clean_datasets/
        # AdvExamplesDir:对抗性样本所在位置AdversarialExampleDatasets/
        # color_mode:CIFAR10为RGB,MNIST为L
        # Targeted:False为非目标攻击,Ture为目标攻击

        self.device = device
        assert DataSet.upper() in ['MNIST', 'CIFAR10'
                                   ], "The data set must be MNIST or CIFAR10"
        self.dataset = DataSet.upper()
        self.color_mode = 'RGB' if self.dataset == 'CIFAR10' else 'L'
        self.attack_name = AttackName.upper()
        # 非目标攻击名称
        supported_un_targeted = [
            'FGSM', 'RFGSM', 'BIM', 'PGD', 'DEEPFOOL', 'UAP'
        ]
        # 目标攻击名称
        supported_targeted = ['LLC', "RLLC", 'ILLC', 'JSMA', 'CW2']
        assert self.attack_name in supported_un_targeted or self.attack_name in supported_targeted, \
            "\nCurrently, our implementation support attacks of FGSM, RFGSM, BIM, UMIFGSM, DeepFool, LLC, RLLC, ILLC, TMIFGSM, JSMA, CW2,....\n"
        if self.attack_name.upper() in supported_un_targeted:
            self.Targeted = False
        else:
            self.Targeted = True

        # 加载模型
        # raw_model_location:模型位置data/CIFAR10/model/CIFAR10_raw.pt或者MNIST
        # raw_model:模型
        # ********若要衡量白盒攻击将路径改为RawModelLocation/防御名称/数据集名称_防御名称_enhanced.pt********
        raw_model_location = '{}{}/model/{}_raw.pt'.format(
            RawModelLocation, self.dataset, self.dataset)
        if self.dataset == 'MNIST':
            self.raw_model = MNIST_CNN().to(device)
            self.raw_model.load(path=raw_model_location, device=device)
        else:
            self.raw_model = ResNet18().to(device)
            self.raw_model.load(path=raw_model_location, device=device)

        # 获取干净数据集及标签
        # nature_samples:干净数据集CleanDatasets/CIFAR10/CIFAR10_inputs.npy或者MNIST
        # labels_samples:干净数据集标签CleanDatasets/CIFAR10/CIFAR10_labels.npy或者MNIST
        self.nature_samples = np.load('{}{}/{}_inputs.npy'.format(
            CleanDataLocation, self.dataset, self.dataset))
        self.labels_samples = np.load('{}{}/{}_labels.npy'.format(
            CleanDataLocation, self.dataset, self.dataset))

        # 获取目标标签
        # 如果是LLC RLLC和ILLC攻击,为LLC RLLC和ILLC准备目标标签CleanDatasets/CIFAR10/CIFAR10_llc.npy
        if self.attack_name.upper() in ['LLC', 'RLLC', 'ILLC']:
            self.targets_samples = np.load('{}{}/{}_llc.npy'.format(
                CleanDataLocation, self.dataset, self.dataset))
        # 否则目标标签为CleanDatasets/CIFAR10/CIFAR10_targets.npy
        else:
            self.targets_samples = np.load('{}{}/{}_targets.npy'.format(
                CleanDataLocation, self.dataset, self.dataset))

        # 获取对抗性样本
        # AdvExamplesDir:AdversarialExampleDatasets/attack_name/CIFAR10/或者MNIST
        # adv_samples:对抗性样本AdversarialExampleDatasets/attack_name/CIFAR10/attack_name_AdvExamples.npy或者MNIST
        self.AdvExamplesDir = AdvExamplesDir + self.attack_name + '/' + self.dataset + '/'
        # 如果没有这个路径则提示
        if os.path.exists(self.AdvExamplesDir) is False:
            print(
                "the directory of {} is not existing, please check carefully".
                format(self.AdvExamplesDir))
        self.adv_samples = np.load('{}{}_AdvExamples.npy'.format(
            self.AdvExamplesDir, self.attack_name))
        # self.adv_labels = np.load('{}{}_AdvLabels.npy'.format(self.AdvExamplesDir, self.AttackName))

        # 对对抗性样本进行标签预测
        # predictions:对抗性样本预测标签
        predictions = predict(model=self.raw_model,
                              samples=self.adv_samples,
                              device=self.device).detach().cpu().numpy()

        # 定义softmax函数
        def soft_max(x):
            return np.exp(x) / np.sum(np.exp(x), axis=0)

        # 对预测标签进行softmax计算
        # softmax_prediction:经softmax的预测标签
        tmp_soft_max = []
        for i in range(len(predictions)):
            tmp_soft_max.append(soft_max(predictions[i]))
        self.softmax_prediction = np.array(tmp_soft_max)
コード例 #8
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    # dataset:数据集名称MNIST/CIFAR10
    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # 获取训练的超参数,获取模型,划分训练集和验证集
    # training_parameters:训练超参数
    # model_framework:网络
    # train_loader:训练集
    # valid_loader:验证集
    if dataset == 'MNIST':
        training_parameters = MMA_MNIST_Training_Parameters
        model_framework = MNIST_CNN().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_mnist_train_validate_loader(
            dir_name='../data/MNIST/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
    else:
        training_parameters = MMA_CIFAR10_Training_Parameters
        model_framework = ResNet18().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_cifar10_train_validate_loader(
            dir_name='../data/CIFAR10/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
    # 对训练集/验证集的每个分组进行编号
    add_indexes_to_loader(train_loader)
    add_indexes_to_loader(valid_loader)

    # defense_name:防御名称
    # nat_params:对抗训练的参数
    defense_name = 'DeepFoolMMA'
    deepfoolmma_params = {
        'nb_iter': args.nb_iter,
        'max_iters': args.max_iters,
        'overshoot': args.overshoot,
        'test_eps': args.test_eps,
        'test_eps_iter': args.test_eps_iter,
        'clean_loss_fn': args.clean_loss_fn,
        'margin_loss_fn': args.margin_loss_fn,
        'attack_loss_fn': args.attack_loss_fn,
        'search_loss_fn': args.search_loss_fn,
        'hinge_maxeps': args.hinge_maxeps,
        'clean_loss_coeff': args.clean_loss_coeff,
        'disp_interval': args.disp_interval
    }

    # 将参数传入OriginMMA防御中
    deepfoolmma = DEEPFOOLMMADefense(loader=train_loader,
                                     dataname="train",
                                     verbose=True,
                                     model=model_framework,
                                     defense_name=defense_name,
                                     dataset=dataset,
                                     training_parameters=training_parameters,
                                     device=device,
                                     **deepfoolmma_params)
    # 进行对抗训练
    deepfoolmma.test_defense(validation_loader=valid_loader)
コード例 #9
0
    def __init__(self,
                 dataset='MNIST',
                 attack_name='FGSM',
                 targeted=False,
                 raw_model_location='../data/',
                 clean_data_location='../clean_datasets/',
                 adv_examples_dir='../AdversarialExampleDatasets/',
                 device=torch.device('cpu')):
        # dataset:数据集MNIST或者CIFAR10
        # attack_name:攻击名称
        # targeted:目标攻击还非目标攻击
        # raw_model_location:训练网络所在位置
        # clean_data_location:用于生产对抗样本的干净数据集存放位置
        # adv_examples_dir:产生的对抗样本存放位置
        # 如果数据集不为MNIST或者CIFAR10,给出提示
        self.dataset = dataset.upper()
        if self.dataset not in {'MNIST', 'CIFAR10'}:
            raise ValueError("The data set must be MNIST or CIFAR10")
        # 如果攻击名称不为如下的其中之一,给出提示
        self.attack_name = attack_name.upper()
        supported = {
            'FGSM', 'RFGSM', 'BIM', 'PGD', 'DEEPFOOL', 'LLC', "RLLC", 'ILLC',
            'JSMA', 'CW2'
        }
        if self.attack_name not in supported:
            raise ValueError(
                self.attack_name +
                'is unknown!\nCurrently, our implementation support the attacks: '
                + ', '.join(supported))
        # 加载模型和模型参数
        # 模型位置data/CIFAR10/model/CIFAR10_raw.pt或者data/MNIST/model/MNIST_raw.pt
        # **************根据不同模型可改变模型名称**************
        # **************衡量白盒攻击需要改变名称raw_model_location/防御名称/数据集名称_防御名称_enhanced.pt**************
        raw_model_location = '{}{}/model/{}_raw.pt'.format(
            raw_model_location, self.dataset, self.dataset)
        # 根据数据集名称的不同加载不同模型
        # **************根据不同模型加载模型参数**************
        if self.dataset == 'MNIST':
            self.raw_model = MNIST_CNN().to(device)
            self.raw_model.load(path=raw_model_location, device=device)
        else:
            self.raw_model = ResNet18().to(device)
            self.raw_model.load(path=raw_model_location, device=device)
        # 加载非目标攻击将要被攻击的干净数据集和标签
        print(
            'Loading the prepared clean samples (nature inputs and corresponding labels) that will be attacked ...... '
        )
        # 加载将要被攻击的干净数据集clean_datasets/CIFAR10/CIFAR10_inputs.npy或者clean_datasets/MNIST/MNIST_inputs.npy
        self.nature_samples = np.load('{}{}/{}_inputs.npy'.format(
            clean_data_location, self.dataset, self.dataset))
        # 加载将要被攻击的干净标签clean_datasets/CIFAR10/CIFAR10_labels.npy或者clean_datasets/MNIST/MNIST_labels.npy
        self.labels_samples = np.load('{}{}/{}_labels.npy'.format(
            clean_data_location, self.dataset, self.dataset))

        # 如果为目标攻击,获取目标标签
        if targeted:
            print(
                'For Targeted Attacks, loading the randomly selected targeted labels that will be attacked ......'
            )
            # 如果是LLC, RLLC, ILLC目标攻击,则加载最不可能分类标签clean_datasets/CIFAR10/CIFAR10_llc.npy或者是MNIST
            if self.attack_name.upper() in ['LLC', 'RLLC', 'ILLC']:
                print(
                    '#### Especially, for LLC, RLLC, ILLC, loading the least likely class that will be attacked'
                )
                self.targets_samples = np.load('{}{}/{}_llc.npy'.format(
                    clean_data_location, self.dataset, self.dataset))
            # 否则加载非真实标签的随机标签clean_datasets/CIFAR10/CIFAR10_targets.npy或者是MNIST
            else:
                self.targets_samples = np.load('{}{}/{}_targets.npy'.format(
                    clean_data_location, self.dataset, self.dataset))

        # 对抗样本的存放位置
        # AdversarialExampleDatasets/attact_name/CIFAR10/或者AdversarialExampleDatasets/attact_name/MNIST/
        self.adv_examples_dir = adv_examples_dir + self.attack_name + '/' + self.dataset + '/'
        # 创建攻击名称文件夹AdversarialExampleDatasets/attact_name
        if self.attack_name not in os.listdir(adv_examples_dir):
            os.mkdir(adv_examples_dir + self.attack_name + '/')
        # 则创建数据集名称文件夹AdversarialExampleDatasets/attact_name/CIFAR10/或者AdversarialExampleDatasets/attact_name/MNIST/
        if self.dataset not in os.listdir(adv_examples_dir + self.attack_name +
                                          '/'):
            os.mkdir(self.adv_examples_dir)
        # 直接创建文件夹
        else:
            shutil.rmtree('{}'.format(self.adv_examples_dir))
            os.mkdir(self.adv_examples_dir)
        self.device = device
コード例 #10
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    # dataset:数据集名称MNIST或CIFAR10
    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # 加载模型和测试集
    raw_model_location = '{}{}/model/{}_raw.pt'.format('../data/', dataset,
                                                       dataset)
    if dataset == 'MNIST':
        raw_model = MNIST_CNN().to(device)
        raw_model.load(path=raw_model_location, device=device)
        test_loader = get_mnist_test_loader(dir_name='../data/MNIST/',
                                            batch_size=30)
    else:
        raw_model = ResNet18().to(device)
        raw_model.load(path=raw_model_location, device=device)
        test_loader = get_cifar10_test_loader(dir_name='../data/CIFAR10/',
                                              batch_size=25)
    raw_model.eval()

    # 原始模型对测试集进行预测
    predicted_raw, true_label = prediction(model=raw_model,
                                           test_loader=test_loader,
                                           device=device)

    # 需要再训练的防御
    re_train_defenses = {'NAT', 'RLT', 'RLT1', 'RLT2', 'RLT3', 'EAT', 'UAPAT'}
    # 其他防御
    other_defenses = {'NRC'}
    # defense_name:防御名称
    defense_name = args.defense.upper().strip()
    # 如果是再训练模型防御
    if defense_name in re_train_defenses:
        print(
            '\nthe ##{}## defense is a kind of complete defenses that retrain the model'
            .format(defense_name))
        # 加载防御模型
        # defended_model_location:防御模型位置DefenseEnhancedModels/defense_name/CIFAR10_defense_name_enhanced.pt或者MNIST
        defended_model_location = '{}/{}/{}_{}_enhanced.pt'.format(
            '../DefenseEnhancedModels', defense_name, dataset, defense_name)
        defended_model = MNIST_CNN().to(
            device) if dataset == 'MNIST' else ResNet18().to(device)
        defended_model.load(path=defended_model_location, device=device)
        defended_model.eval()
        # 利用防御模型进行标签预测
        predicted_defended, _ = prediction(model=defended_model,
                                           test_loader=test_loader,
                                           device=device)
        # 计算防御指标
        raw_acc, def_acc, cav, crr, csr = defense_utility_measure(
            predicted_defended, predicted_raw, true_label)
    else:
        if defense_name == 'NRC':
            print(
                '\n##{}## defense is a kind of region-based classification defenses ... '
                .format(defense_name))
            from Defenses.DefenseMethods.NRC import NRCDefense
            num_points = 1000
            radius = args.radius
            mean = args.mean
            std = args.std
            nrc = NRCDefense(model=raw_model,
                             defense_name='NRC',
                             dataset=dataset,
                             device=device,
                             num_points=num_points)
            predicted_defended = []
            with torch.no_grad():
                for index, (images, labels) in enumerate(test_loader):
                    nrc_labels = nrc.region_based_classification(
                        samples=images, radius=radius, mean=mean, std=std)
                    predicted_defended.extend(nrc_labels)
            predicted_defended = np.array(predicted_defended)
            correct_prediction_def = np.equal(predicted_defended, true_label)
            def_acc = np.mean(correct_prediction_def.astype(float))
            correct_prediction_raw = np.equal(np.argmax(predicted_raw, axis=1),
                                              true_label)
            raw_acc = np.mean(correct_prediction_raw.astype(float))
            # Classification Accuracy Variance(CAV)
            cav = def_acc - raw_acc
            # Find the index of correct predicted examples by defence-enhanced model and raw model
            idx_def = np.squeeze(np.argwhere(correct_prediction_def == True))
            idx_raw = np.squeeze(np.argwhere(correct_prediction_raw == True))
            idx = np.intersect1d(idx_def, idx_raw, assume_unique=True)
            crr = (len(idx_def) - len(idx)) / len(predicted_raw)
            csr = (len(idx_raw) - len(idx)) / len(predicted_raw)
        else:
            raise ValueError('{} is not supported!!!'.format(defense_name))
    # 输出防御指标的值
    print("****************************")
    print(
        "The utility evaluation results of the {} defense for {} Dataset are as follow:"
        .format(defense_name, dataset))
    print('Acc of Raw Model:\t\t{:.2f}%'.format(raw_acc * 100))
    print('Acc of {}-enhanced Model:\t{:.2f}%'.format(defense_name,
                                                      def_acc * 100))
    print('CAV: {:.2f}%'.format(cav * 100))
    print('CRR: {:.2f}%'.format(crr * 100))
    print('CSR: {:.2f}%'.format(csr * 100))
    print("****************************")
コード例 #11
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Set the random seed manually for reproducibility.
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    # dataset:数据集名称MNIST或CIFAR10
    # num:选取的干净样本的数量
    # dataset_location:数据集所在位置data/CIFAR10/或者MNIST
    # raw_model_location:模型所在位置data/CIFAR10/model/CIFAR10_raw.pt或者MNIST
    dataset = args.dataset.upper()
    num = args.number
    # *****************数据集存放的位置*****************
    dataset_location = '../data/{}/'.format(dataset)
    raw_model_location = '../data/{}/model/{}_raw.pt'.format(dataset, dataset)
    print(
        "\nStarting to select {} {} Candidates Example, which are correctly classified by the Raw Model from {}\n"
        .format(num, dataset, raw_model_location))
    # 加载模型,获取测试集
    # raw_model:模型
    # test_loader:测试集
    # load the raw model and testing dataset
    assert args.dataset == 'MNIST' or args.dataset == 'CIFAR10'
    if dataset == 'MNIST':
        raw_model = MNIST_CNN().to(device)
        raw_model.load(path=raw_model_location, device=device)
        test_loader = get_mnist_test_loader(dir_name=dataset_location,
                                            batch_size=1,
                                            shuffle=False)
    else:
        raw_model = ResNet18().to(device)
        raw_model.load(path=raw_model_location, device=device)
        test_loader = get_cifar10_test_loader(dir_name=dataset_location,
                                              batch_size=1,
                                              shuffle=False)
    # 获取分类正确的测试集
    # successful:测试集经过模型,保留被正确预测的图像和标签以及它们对应softmax最小输出的标签
    successful = []
    raw_model.eval()
    with torch.no_grad():
        for image, label in test_loader:
            image = image.to(device)
            label = label.to(device)
            output = raw_model(image)
            _, predicted = torch.max(output.data, 1)
            if predicted == label:
                _, least_likely_class = torch.min(output.data, 1)
                successful.append([image, label, least_likely_class])
    print(len(successful))
    # 随机选取num个正确分类的图像
    candidates = random.sample(successful, num)

    candidate_images = []
    candidate_labels = []
    candidates_llc = []
    candidate_targets = []
    for index in range(len(candidates)):
        # 将选择的图片,标签和最不可能的标签分开
        image = candidates[index][0].cpu().numpy()
        image = np.squeeze(image, axis=0)
        candidate_images.append(image)
        label = candidates[index][1].cpu().numpy()[0]
        llc = candidates[index][2].cpu().numpy()[0]
        # 生成0~9的10个标签,去除真实标签,随机选择一个标签
        classes = [i for i in range(10)]
        classes.remove(label)
        target = random.sample(classes, 1)[0]
        # 将随机目标标签,最不可能分类目标标签和真实标签转化为one-hot标签保存
        one_hot_label = [0 for i in range(10)]
        one_hot_label[label] = 1
        one_hot_llc = [0 for i in range(10)]
        one_hot_llc[llc] = 1
        one_hot_target = [0 for i in range(10)]
        one_hot_target[target] = 1
        candidate_labels.append(one_hot_label)
        candidates_llc.append(one_hot_llc)
        candidate_targets.append(one_hot_target)
    # 图像
    candidate_images = np.array(candidate_images)
    # 图像对应真实one-hot标签
    candidate_labels = np.array(candidate_labels)
    # 图像对应最不可能分类的one-hot标签
    candidates_llc = np.array(candidates_llc)
    # 图像对应非真实标签的随机one-hot标签
    candidate_targets = np.array(candidate_targets)
    # 打开CIFAR10/或MNIST/文件夹
    if dataset not in os.listdir('./'):
        os.mkdir('./{}/'.format(dataset))
    else:
        shutil.rmtree('{}'.format(dataset))
        os.mkdir('./{}/'.format(dataset))
    # 将图片,标签,最不可能分类的标签,目标标签存入clean_datasets/CIFAR10/CIFAR10_inputs.npy等等或者MNIST
    np.save('./{}/{}_inputs.npy'.format(dataset, dataset), candidate_images)
    np.save('./{}/{}_labels.npy'.format(dataset, dataset), candidate_labels)
    np.save('./{}/{}_llc.npy'.format(dataset, dataset), candidates_llc)
    np.save('./{}/{}_targets.npy'.format(dataset, dataset), candidate_targets)
コード例 #12
0
ファイル: UAPAT_Test.py プロジェクト: zuraSherl/defense_test
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    # dataset:数据集名称MNIST/CIFAR10
    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # 获取训练的超参数,获取模型,划分训练集和验证集
    # training_parameters:训练超参数
    # model_framework:网络
    # train_loader:训练集
    # valid_loader:验证集
    if dataset == 'MNIST':
        training_parameters = MNIST_Training_Parameters
        model_framework = MNIST_CNN().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_mnist_train_validate_loader(
            dir_name='../data/MNIST/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
        uap_train_loader, uap_valid_loader = get_mnist_train_validate_loader(
            dir_name='../data/MNIST/',
            batch_size=1,
            valid_size=0.9,
            shuffle=True)
    else:
        training_parameters = CIFAR10_Training_Parameters
        model_framework = ResNet18().to(device)
        batch_size = training_parameters['batch_size']
        train_loader, valid_loader = get_cifar10_train_validate_loader(
            dir_name='../data/CIFAR10/',
            batch_size=batch_size,
            valid_size=0.1,
            shuffle=True)
        uap_train_loader, uap_valid_loader = get_cifar10_train_validate_loader(
            dir_name='../data/CIFAR10/',
            batch_size=1,
            valid_size=0.9,
            shuffle=True)
    # defense_name:防御名称
    # nat_params:对抗训练的参数
    defense_name = 'UAPAT'
    uapat_params = {
        'fool_rate': args.fool_rate,
        'epsilon': args.epsilon,
        'max_iter_universal': args.max_iter_universal,
        'overshoot': args.overshoot,
        'max_iter_deepfool': args.max_iter_deepfool
    }
    # 将参数传入UAPAT防御中
    uapat = UAPATDefense(model=model_framework,
                         defense_name=defense_name,
                         dataset=dataset,
                         training_parameters=training_parameters,
                         device=device,
                         **uapat_params)
    # 进行对抗训练
    uapat.defense(train_loader=train_loader,
                  validation_loader=valid_loader,
                  uap_train_loader=uap_train_loader,
                  uap_validation_loader=uap_valid_loader)
コード例 #13
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    # dataset:数据集名称转化为大写形式MNIST/CIFAR10
    dataset = args.dataset.upper()
    assert dataset == 'MNIST' or dataset == 'CIFAR10'
    # batch_size:每个分组的大小为1000
    batch_size = 1000
    # 获取MNIST/CIFAR10的模型,测试集
    model_location = '{}/{}/model/{}_raw.pt'.format('../data', dataset,
                                                    dataset)
    if dataset == 'MNIST':
        raw_model = MNIST_CNN().to(device)
        test_loader = get_mnist_test_loader(dir_name='../data/MNIST/',
                                            batch_size=batch_size)
    else:
        raw_model = ResNet18().to(device)
        test_loader = get_cifar10_test_loader(dir_name='../data/CIFAR10/',
                                              batch_size=batch_size)

    # 加载MNIST/CIFAR10的模型
    raw_model.load(path=model_location, device=device)
    # defense_name:防御名称为NRC
    defense_name = 'NRC'
    # 将参数传入NRC防御中
    nrc = NRCDefense(model=raw_model,
                     defense_name=defense_name,
                     dataset=dataset,
                     device=device,
                     num_points=args.num_points)

    # 如果要进行最优半径的搜索
    if args.search:
        # get the validation dataset (10% with the training dataset)
        print('start to search the radius r using validation dataset ...')
        # 获取MNIST/CIFAR10的验证集
        if dataset == 'MNIST':
            _, valid_loader = get_mnist_train_validate_loader(
                dir_name='../data/MNIST/',
                batch_size=batch_size,
                valid_size=0.02,
                shuffle=True)
        else:
            _, valid_loader = get_cifar10_train_validate_loader(
                dir_name='../data/CIFAR10/',
                batch_size=batch_size,
                valid_size=0.02,
                shuffle=True)
        # radius:通过验证集得到最优的半径值
        radius = nrc.search_best_radius(validation_loader=valid_loader,
                                        radius_min=args.radius_min,
                                        radius_max=args.radius_max,
                                        radius_step=args.radius_step)
    # 否则半径值为默认的0.01
    else:
        radius = round(args.radius, 2)
    print(
        '######\nthe radius for NRC is set or searched as: {}\n######'.format(
            radius))

    # 计算NRC模型在测试集上的分类精度
    print(
        '\nStart to calculate the accuracy of region-based classification defense on testing dataset'
    )
    raw_model.eval()
    total = 0.0
    correct = 0.0
    with torch.no_grad():
        for images, labels in test_loader:
            nrc_labels = nrc.region_based_classification(samples=images,
                                                         radius=radius,
                                                         mean=args.mean,
                                                         std=args.std)
            nrc_labels = torch.from_numpy(nrc_labels)
            total += labels.size(0)
            correct += (nrc_labels == labels).sum().item()
        ratio = correct / total
        print(
            '\nTest accuracy of the {} model on the testing dataset: {:.1f}/{:.1f} = {:.2f}%\n'
            .format(raw_model.model_name, correct, total, ratio * 100))