if path_model == MODEL_vae2_1: state_dict = torch.load(os.path.join(path_model, 'model_state.pth'),map_location=torch.device('cpu')) model = autoencoder print('Loading Passed') else: model = WitnessComplexAutoencoder(autoencoder) state_dict = torch.load(os.path.join(path_model, 'model_state.pth'),map_location=torch.device('cpu')) state_dict2 = torch.load(os.path.join(os.path.join(path_norm2,exp_norm2), 'model_state.pth')) if 'latent' not in state_dict: state_dict['latent_norm'] = state_dict2['latent_norm'] * 0.1 print('passed') model.load_state_dict(state_dict) model.eval() z = model.encode(images.float()) debugging = True np.save('/Users/simons/PycharmProjects/MT-VAEs-TDA/src/datasets/simulated/xy_trans_l_newpers/latents_wae.np', z.detach().numpy()) # plot_2Dscatter(z.detach().numpy(), labels, path_to_save=os.path.join(path_save, 'pos_{}.pdf'.format( # time.strftime("%Y%m%d-%H%M%S"))), title=None, show=True, palette = 'custom')
state_dict = torch.load(os.path.join(path_exp, 'model_state.pth'), map_location=torch.device('cpu')) state_dict2 = torch.load( os.path.join(os.path.join(path_norm2, exp_norm2), 'model_state.pth')) if 'latent' not in state_dict: state_dict['latent_norm'] = state_dict2['latent_norm']*0.1 print('passed') model.load_state_dict(state_dict) model.eval() dataset = MNIST_offline() data, labels = dataset.sample(train = False) z = model.encode(torch.Tensor(data).float()) np.save(os.path.join(path_exp,'wae_path_stdiso'),z.detach().numpy()) np.save(os.path.join(path_exp, 'labelswae_path_stdiso'), labels) # # df = pd.DataFrame(z) # df['labels'] = labels # df.to_csv(os.path.join(path_exp, '{}_latents.csv'.format('final')), index=False) # plot_2Dscatter(z.detach().numpy(), labels, path_to_save=os.path.join( # path_exp, '{}_latent_visualization.pdf'.format('final')), title=None, show=False, # palette='custom2')