コード例 #1
0
    def test_should_return_all_frames_when_no_predicate_is_applied(self):
        dataframe = create_dataframe(3)

        outcome_1 = Outcome(
            pd.DataFrame({
                'labels': ["car", "bus"],
                'scores': [0.5, 0.6]
            }), 'labels')
        outcome_2 = Outcome(pd.DataFrame({
            'labels': ["bus"],
            'scores': [0.5]
        }), 'labels')
        outcome_3 = Outcome(
            pd.DataFrame({
                'labels': ["car", "train"],
                'scores': [0.5, 0.6]
            }), 'labels')
        batch = Batch(frames=dataframe,
                      outcomes={"test": [outcome_1, outcome_2, outcome_3]})

        plan = type("ScanPlan", (), {"predicate": None})
        predicate_executor = SequentialScanExecutor(plan)
        predicate_executor.append_child(DummyExecutor([batch]))

        filtered = list(predicate_executor.exec())[0]
        self.assertEqual(batch, filtered)
コード例 #2
0
    def test_should_return_only_frames_satisfy_predicate(self):
        dataframe = create_dataframe(3)

        outcome_1 = Outcome(
            pd.DataFrame({
                'labels': ["car", "bus"],
                'scores': [0.5, 0.6]
            }), 'labels')
        outcome_2 = Outcome(pd.DataFrame({
            'labels': ["bus"],
            'scores': [0.5]
        }), 'labels')
        outcome_3 = Outcome(
            pd.DataFrame({
                'labels': ["car", "train"],
                'scores': [0.5, 0.6]
            }), 'labels')
        batch = Batch(frames=dataframe,
                      outcomes={"test": [outcome_1, outcome_2, outcome_3]})
        expression = type("AbstractExpression", (),
                          {"evaluate": lambda x: [False, False, True]})

        plan = type("ScanPlan", (), {"predicate": expression})
        predicate_executor = SequentialScanExecutor(plan)
        predicate_executor.append_child(DummyExecutor([batch]))

        expected = batch[[2]]

        filtered = list(predicate_executor.exec())[0]
        self.assertEqual(expected, filtered)
コード例 #3
0
ファイル: test_expression_tree.py プロジェクト: jarulraj/eva
    def test_func_expr_with_cmpr_and_const_expr_should_work(self):
        frames = create_dataframe(2)
        outcome_1 = Outcome(pd.DataFrame(
            {'labels': ["car", "bus"], 'scores': [0.5, 0.6]}), 'labels')
        outcome_2 = Outcome(pd.DataFrame(
            {'labels': ["bus"], 'scores': [0.6]}), 'labels')

        func = FunctionExpression(lambda x: [outcome_1, outcome_2])
        value_expr = ConstantValueExpression("car")
        expression_tree = ComparisonExpression(ExpressionType.COMPARE_EQUAL,
                                               func,
                                               value_expr)

        batch = Batch(frames=frames)

        self.assertEqual([True, False], expression_tree.evaluate(batch))
コード例 #4
0
    def _get_predictions(self, frames: np.ndarray) -> List[Outcome]:
        """
        Performs predictions on input frames
        Arguments:
            frames (np.ndarray): Frames on which predictions need
            to be performed

        Returns:
            tuple containing predicted_classes (List[List[str]]),
            predicted_boxes (List[List[BoundingBox]]),
            predicted_scores (List[List[float]])

        """

        transform = transforms.Compose([transforms.ToTensor()])
        images = [transform(frame) for frame in frames]
        predictions = self.model(images)
        prediction_df_list = []
        for prediction in predictions:
            pred_class = [str(self.labels[i]) for i in
                          list(prediction['labels'].detach().numpy())]
            pred_boxes = [[[i[0], i[1]],
                           [i[2], i[3]]]
                          for i in
                          list(prediction['boxes'].detach().numpy())]
            pred_score = list(prediction['scores'].detach().numpy())
            pred_t = \
                [pred_score.index(x) for x in pred_score if
                 x > self.threshold][-1]
            pred_boxes = list(pred_boxes[:pred_t + 1])
            pred_class = list(pred_class[:pred_t + 1])
            pred_score = list(pred_score[:pred_t + 1])
            prediction_df_list.append(
                Outcome(pd.DataFrame(
                    {"label": pred_class, "pred_score": pred_score,
                     "pred_boxes": pred_boxes}),
                    'label'))
        return prediction_df_list
コード例 #5
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_ne_should_return_true_if_value_not_present(self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     self.assertTrue(outcome != 4)
コード例 #6
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_ne_should_return_false_if_value_present_atleast_once(self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     self.assertFalse(outcome.A != 1)
コード例 #7
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_lte_should_return_true_if_atleast_one_value_lte_given(self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     self.assertTrue(outcome.A <= 3)
コード例 #8
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_lte_should_return_false_if_no_value_lte_given(self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     self.assertFalse(outcome.A < 1)
コード例 #9
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_equals_should_return_false_frame_if_no_value_in_data_frame_equal(
         self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     self.assertFalse(outcome.A == 4)
コード例 #10
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_equals_should_return_true_if_alreast_one_value_equal(self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     self.assertTrue(getattr(outcome, 'A') == 1)
コード例 #11
0
ファイル: test_outcome.py プロジェクト: Ashwin1934/eva
 def test_get_attribute_should_return_new_outcome(self):
     data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
     outcome = Outcome(data, identifier='A')
     expected = Outcome(data[["A"]], identifier='A')
     self.assertEqual(outcome.A, expected)