def __init__(self, config): super().__init__() self.lstm_pooling = config['lstm_pooling'] self.lstm_encoder = define_lstm_encoder()(config) self.gnn_name = config['gnn_name'] self.gnn_encoder = define_ns_gnn_encoder(config['gnn_name'])(config) self.last_act = get_act_fn(config['final_act_fn']) self.lstm_out = nn.Linear(config['lstm_last_ts_dim'], config['out_dim']) self._initialize_weights()
def __init__(self, config): super().__init__() self.lstm_encoder = DynamicLSTM(config) self.flat_after = config['flat_after'] fc_in_dim = config['lstm_outdim'] if self.flat_after: flat_dim = config['flat_nhid'] if config[ 'flat_nhid'] is not None else config['num_flat_feats'] self.flat_fc = nn.Linear(config['num_flat_feats'], flat_dim) fc_in_dim += flat_dim self.out_layer = nn.Linear(fc_in_dim, config['out_dim']) self.drop = nn.Dropout(config['main_dropout']) self.last_act = get_act_fn(config['final_act_fn']) self._initialize_weights()
def __init__(self, config): super().__init__() self.gnn_encoder = define_gnn_encoder(config['gnn_name'])(config) self.last_act = get_act_fn(config['final_act_fn']) # where to put the flat features # self.flat_before = config['add_flat'] and config['flat_first'] (done in GraphDataset) self.flat_after = config['flat_after'] if self.flat_after: flat_dim = config['flat_nhid'] if config[ 'flat_nhid'] is not None else config['num_flat_feats'] self.flat_fc = nn.Linear(config['num_flat_feats'], flat_dim) fc_in_dim = config['gnn_outdim'] + flat_dim self.out_layer = nn.Linear(fc_in_dim, config['out_dim']) self.drop = nn.Dropout(config['main_dropout']) self._initialize_weights()
def __init__(self, config): super().__init__() self.lstm_encoder = define_lstm_encoder()(config) self.gnn_encoder = define_gnn_encoder(config['gnn_name'])(config) self.k = config['dg_k'] self.flat_after, self.add_lstm, fc_in_dim, flat_dim = determine_fc_in_dim( config) if self.flat_after: self.flat_fc = nn.Linear(config['num_flat_feats'], flat_dim) if self.flat_after or self.add_lstm: self.out_layer = nn.Linear(fc_in_dim, config['num_cls']) self.last_act = get_act_fn(config['final_act_fn']) self.drop = nn.Dropout(config['main_dropout']) self.lstm_out = nn.Linear(config['lstm_last_ts_dim'], config['out_dim']) self._initialize_weights()
def __init__(self, config): super().__init__() self.gnn_encoder = define_ns_gnn_encoder(config['gnn_name'])(config) self.last_act = get_act_fn(config['final_act_fn']) self._initialize_weights()