コード例 #1
0
    def load_test_data(self, m_5=6000, k=1000):
        test_bgs_data = model_utils.load_test_bg_data(self.path_dataset)

        test_signal_data = model_utils.load_test_signal_data(self.path_dataset,
                                                             m_5=m_5,
                                                             k=k)

        factor = -1 * np.log(0.01)
        #
        # factor = 1
        norm_test_bgs_data = model_utils.normalize(test_bgs_data, factor)
        norm_test_signal_data = model_utils.normalize(test_signal_data, factor)

        reshape_norm_test_bg = np.reshape(norm_test_bgs_data, (
                                norm_test_bgs_data.shape[0],
                                norm_test_bgs_data.shape[1],
                                norm_test_bgs_data.shape[2],
                                1))

        reshape_norm_train_bg = np.reshape(norm_test_signal_data, (
                                           norm_test_signal_data.shape[0],
                                           norm_test_signal_data.shape[1],
                                           norm_test_signal_data.shape[2],
                                           1))

        return reshape_norm_test_bg, reshape_norm_train_bg
コード例 #2
0
    def load_train_data(self):
        train_data = model_utils.load_train_data(self.path_dataset)
        test_bgs_data = model_utils.load_test_bgs_data(self.path_dataset)

        factor = -1 * np.log(0.01)
        norm_train_data = model_utils.normalize(train_data, factor)
        norm_test_bgs_data = model_utils.normalize(test_bgs_data, factor)

        return norm_train_data, norm_test_bgs_data
コード例 #3
0
    def load_test_data(self, signal_id=1):
        test_bgs_data = model_utils.load_test_bgs_data(self.path_dataset)
        test_signal_data = model_utils.load_test_signal_data(
            self.path_dataset, signal_id=signal_id)

        factor = -1 * np.log(0.01)
        norm_test_bgs_data = model_utils.normalize(test_bgs_data, factor)
        norm_test_signal_data = model_utils.normalize(test_signal_data, factor)

        return norm_test_bgs_data, norm_test_signal_data
コード例 #4
0
    def load_train_data(self):
        train_data = model_utils.load_train_data(self.path_dataset)
        test_bgs_data = model_utils.load_test_bgs_data(self.path_dataset)

        train_shape = (self.dataset_config['TRAIN_SIZE'], self.shape)
        test_bgs_shape = (self.dataset_config['TEST_BACKGROUND_SIZE'], self.shape)

        factor = -1 * np.log(0.01)
        norm_train_data = model_utils.normalize(train_data.reshape(train_shape), factor)
        norm_test_bgs_data = model_utils.normalize(test_bgs_data.reshape(test_bgs_shape), factor)

        return norm_train_data, norm_test_bgs_data
コード例 #5
0
    def load_test_data(self, signal_id=1):
        test_bgs_data = model_utils.load_test_bgs_data(self.path_dataset)
        test_signal_data = model_utils.load_test_signal_data(self.path_dataset, signal_id=signal_id)

        test_bgs_shape = (len(test_bgs_data), self.shape)
        test_signal_shape = (len(test_signal_data), self.shape)

        print(test_signal_data.shape)
        factor = -1 * np.log(0.01)
        norm_test_bgs_data = model_utils.normalize(test_bgs_data.reshape(test_bgs_shape), factor)
        norm_test_signal_data = model_utils.normalize(test_signal_data.reshape(test_signal_shape), factor)

        return norm_test_bgs_data, norm_test_signal_data
コード例 #6
0
    def forward(self, input):
        gpu_ids = None
        if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 0:
            gpu_ids = range(self.ngpu)
            output = nn.parallel.data_parallel(self.main, input, gpu_ids)
        else:
            output = self.main(input)

        output = output.view(output.size(0), -1)
        if self.noise == 'sphere':
            output = utils.normalize(output)

        return output
コード例 #7
0
    def load_train_data(self):
        train_bg = model_utils.load_train_bg_data(self.path_dataset)
        test_bg = model_utils.load_test_bg_data(self.path_dataset)

        factor = -1 * np.log(0.01)
        norm_train_bg = model_utils.normalize(train_bg, factor)
        norm_test_bg = model_utils.normalize(test_bg, factor)

        # norm_train_bg = train_bg
        # norm_test_bg = test_bg

        reshape_norm_train_bg = np.reshape(norm_train_bg, (
                                           norm_train_bg.shape[0],
                                           norm_train_bg.shape[1],
                                           norm_train_bg.shape[2],
                                           1))

        reshape_norm_test_bg = np.reshape(norm_test_bg, (
                                norm_test_bg.shape[0],
                                norm_test_bg.shape[1],
                                norm_test_bg.shape[2],
                                1))

        return reshape_norm_train_bg, reshape_norm_test_bg