コード例 #1
0
def predict_pipeline(training_pipeline_params):
    path = os.getcwd()
    model = pickle.load(
        open(training_pipeline_params.pretrained_model_path, 'rb'))
    logger.info(f"pretrained model {model} extracted")

    logger.info(
        f"start predict pipeline with params {training_pipeline_params}")
    data = read_data(training_pipeline_params.input_data_path)
    logger.info(f"data.shape is {data.shape}")
    data = drop_columns(data, training_pipeline_params.feature_params)
    logger.info(f"data.shape after dropping some columns is {data.shape}")

    transformer = build_transformer(training_pipeline_params.feature_params)
    transformer.fit(data)
    pred_features = make_features(transformer, data)

    predicts = predict_model(
        model,
        pred_features,
        training_pipeline_params.feature_params.use_log_trick,
    )
    predictions_path = training_pipeline_params.predictions_path
    pd.DataFrame(predicts, columns=['predictions']).to_csv(predictions_path,
                                                           index=None,
                                                           mode='w')
    logger.info(f"predictions are written to {predictions_path}")

    return predicts
コード例 #2
0
def train_pipeline(params: PipelineParams):
    logger.info(f"Start train with params {params}.")
    data = read_data(params.train_data_path)
    logger.info(f"Data shape is {data.shape}")
    data_train, data_val = split_train_val_data(data, params.split_params)
    logger.info(f"Train data shape is {data_train.shape}")
    logger.info(f"Validation data shape is {data_val.shape}")
    target_train = extract_target(data_train, params.features_params)
    data_train = data_train.drop(columns=['target'])
    transformer = build_transformer(params.features_params)
    transformer.fit(data_train)
    features_train = make_features(transformer, data_train)
    logger.info(f"Train features shape is {features_train.shape}")
    target_val = extract_target(data_val, params.features_params)
    data_val = data_val.drop(columns=['target'])
    features_val = make_features(transformer, data_val)
    logger.info(f"Validation features shape is {features_val.shape}")

    model = train_model(features_train, target_train, params.train_params)
    predicts = predict_model(model, features_val)
    metrics = evaluate_model(predicts, target_val)
    with open(params.metric_path, "w") as metric_file:
        json.dump(metrics, metric_file)
    logger.info(f"Metrics are: {metrics}")
    path_to_model = dump_model(model, params.model_path)
    logger.info(f"Model saved at {params.model_path}")
    with open(params.transformer_path, "wb") as tr:
        pickle.dump(transformer, tr)
    logger.info(f"Feature transformer saved at {params.transformer_path}")
    logger.info("Finished.")
    return path_to_model, metrics
コード例 #3
0
    def predict_pipeline(self, data: pd.DataFrame) -> np.ndarray:
        logger.info(f"Start prediction.")

        train_features = make_features(self.pipeline, data)
        logger.info(f"Test features shape: {train_features.shape}")

        predictions = predict_model(train_features, self.model)
        logger.info(f"Prediction done")
        return predictions
コード例 #4
0
def train_pipeline(training_pipeline_params: TrainingPipelineParams, model: SklearnClassifierModel):
    logger.info(f"start train pipeline with params {training_pipeline_params}")
    data = read_data(training_pipeline_params.input_data_path)
    logger.info(f"data.shape is {data.shape}")
    data = drop_columns(data, training_pipeline_params.feature_params)
    logger.info(f"data.shape after dropping some columns is {data.shape}")
    train_df, val_df = split_train_val_data(
        data, training_pipeline_params.splitting_params
    )
    logger.info(f"train_df.shape is {train_df.shape}")
    logger.info(f"val_df.shape is {val_df.shape}")

    if train_df.shape[0] < NOT_ENOUGH_DATA_THRESHOLD:
        msg = "No enough data to build good model"
        logger.warning(msg)
        warning_logger.warning(msg)

    transformer = build_transformer(training_pipeline_params.feature_params)
    transformer.fit(train_df)
    train_features = make_features(transformer, train_df)
    train_target = extract_target(train_df, training_pipeline_params.feature_params)

    logger.info(f"train_features.shape is {train_features.shape}")

    model = train_model(
        train_features, train_target, model
    )

    val_features = make_features(transformer, val_df)
    val_target = extract_target(val_df, training_pipeline_params.feature_params)

    logger.info(f"val_features.shape is {val_features.shape}")
    predicts = predict_model(
        model,
        val_features,
        training_pipeline_params.feature_params.use_log_trick,
    )

    metrics = evaluate_model(
        predicts,
        val_target,
        use_log_trick=training_pipeline_params.feature_params.use_log_trick,
    )

    with open(training_pipeline_params.metric_path, "w") as metric_file:
        json.dump(metrics, metric_file)
    logger.info(f"metrics is {metrics}")

    path_to_model = serialize_model(model, training_pipeline_params.output_model_path)

    return path_to_model, metrics
コード例 #5
0
def predict_pipeline(params: PipelineParams):
    logger.info(f"Start predict pipeline with params {params}")
    data = pd.read_csv(params.data_for_pred_path)
    logger.info(f"Data shape is {data.shape}")
    with open(params.model_path, 'rb') as m:
        model = pickle.load(m)
    logger.info(f"Model {model} loaded.")
    with open(params.transformer_path, 'rb') as t:
        transformer = pickle.load(t)
    logger.info("Transformer loaded.")
    features = make_features(transformer, data)
    logger.info(f"Features shape is {features.shape}")
    predictions = predict_model(model, features)
    logger.info(f"Predictions shape is {predictions.shape}")
    data["pred_target"] = predictions
    logger.info(f"Predictions saved to {params.predictions_path}")
    data.to_csv(params.predictions_path)
    logger.info("Finished.")
コード例 #6
0
ファイル: main.py プロジェクト: hahyunlee/rideshare-retention
def _get_project_root() -> Path:
    return Path(__file__).parent.parent


root_dir = str(_get_project_root())
training_data = '/data/churn_train.csv'
test_data = '/data/churn_test.csv'


if __name__ == "__main__":
    # Load data
    df = load_data(root_dir, training_data)
    df_final = run_data_pipeline(df)
    X, y = create_variables(df_final)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 11)

    # Create models and predict data
    y_pred_lr, y_pred_proba_lr, lr_model = predict_model(X_train, y_train, X_test, LogisticRegression)
    y_pred_rf, y_pred_proba_rf, rf_model = predict_model(X_train, y_train, X_test, RandomForestClassifier)
    y_pred_gb, y_pred_proba_gb, gb_model = predict_model(X_train, y_train, X_test, GradientBoostingClassifier)

    # Visualize results
    print_metrics(y_test, y_pred_lr, 'Logistic Regression')
    print_metrics(y_test, y_pred_rf, 'Random Forest Classifier')
    print_metrics(y_test,y_pred_gb, 'Gradient Boosting Classifier')
    plot_roc_curve(y_test,y_pred_proba_lr, y_pred_proba_rf, y_pred_proba_gb,'LR','RF','GB')

    # Plot feature importance for gradient boosting classifier model
    plot_feature_importance_chart(gb_model, X_train)