コード例 #1
0
    def test_should_return_only_frames_satisfy_predicate(self):
        frame_1 = Frame(1, np.ones((1, 1)), None)
        frame_2 = Frame(1, 2 * np.ones((1, 1)), None)
        frame_3 = Frame(1, 3 * np.ones((1, 1)), None)
        outcome_1 = Prediction(frame_1, ["car", "bus"], [0.5, 0.6])
        outcome_2 = Prediction(frame_2, ["bus"], [0.5, 0.6])
        outcome_3 = Prediction(frame_3, ["car", "train"], [0.5, 0.6])
        batch = FrameBatch(
            frames=[
                frame_1,
                frame_2,
                frame_3,
            ],
            info=None,
            outcomes={"test": [outcome_1, outcome_2, outcome_3]})
        predicate = Predicate(name="test",
                              predicate=lambda prediction: prediction.eq("car")
                              and not prediction.eq("bus"))
        predicate_executor = PredicateExecutor(None, predicate=predicate)

        expected = FrameBatch(frames=[frame_3],
                              info=None,
                              outcomes={"test": [outcome_3]})
        filtered = predicate_executor.execute(batch)
        self.assertEqual(expected, filtered)
コード例 #2
0
 def test_frames_as_numpy_array_should_frames_as_numpy_array(self):
     batch = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, np.ones((1, 1)), None)
     ],
                        info=None)
     expected = list(np.ones((2, 1, 1)))
     actual = list(batch.frames_as_numpy_array())
     self.assertEqual(expected, actual)
コード例 #3
0
 def test_return_only_frames_specified_in_the_indices(self):
     batch = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, np.ones((1, 1)), None)
     ],
                        info=None)
     expected = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)],
                           info=None)
     output = batch[[0]]
     self.assertEqual(expected, output)
コード例 #4
0
    def test_should_return_batches_equivalent_to_number_of_frames(self):
        frame_dog = Frame(1, self._load_image(
            os.path.join(self.base_path, 'data', 'dog.jpeg')), None)
        frame_dog_cat = Frame(1, self._load_image(
            os.path.join(self.base_path, 'data', 'dog_cat.jpg')), None)
        frame_batch = FrameBatch([frame_dog, frame_dog_cat], None)
        detector = FastRCNNObjectDetector()
        result = detector.classify(frame_batch)

        self.assertEqual(["dog"], result[0].labels)
        self.assertEqual(["cat", "dog"], result[1].labels)
コード例 #5
0
 def test_slicing_should_word_for_negative_stop_value(self):
     batch = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, 2 * np.ones((1, 1)), None)
     ],
                        info=None,
                        outcomes={'test': [[None], [None]]})
     expected = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)],
                           info=None,
                           outcomes={'test': [[None]]})
     self.assertEqual(expected, batch[:-1])
コード例 #6
0
 def test_fetching_frames_by_index_should_also_return_outcomes(self):
     batch = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, np.ones((1, 1)), None)
     ],
                        info=None,
                        outcomes={'test': [[None], [None]]})
     expected = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)],
                           info=None,
                           outcomes={'test': [[None]]})
     self.assertEqual(expected, batch[[0]])
コード例 #7
0
 def test_slicing_on_batched_should_return_new_batch_frame(self):
     batch = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, 2 * np.ones((1, 1)), None)
     ],
                        info=None,
                        outcomes={'test': [[None], [None]]})
     expected = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)],
                           info=None,
                           outcomes={'test': [[None]]})
     self.assertEqual(batch, batch[:])
     self.assertEqual(expected, batch[:-1])
コード例 #8
0
ファイル: test_depth_estimator.py プロジェクト: imvinod/Eva
    def test_should_return_batches_equivalent_to_number_of_frames(self):
        frame_dog = Frame(1, self._load_image(
            os.path.join(self.base_path, 'data', 'dog.jpeg')), None)
        frame_dog_cat = Frame(1, self._load_image(
            os.path.join(self.base_path, 'data', 'dog_cat.jpg')), None)
        frame_batch = FrameBatch([frame_dog, frame_dog_cat], None)
        estimator = DepthEstimator()
        result = estimator.process_frames(frame_batch)

        print(result)
        print(result[0].frame)
        print(result[0].depth)
        print(result[0].segm)
コード例 #9
0
 def test_slicing_should_work_with_skip_value(self):
     batch = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, 2 * np.ones((1, 1)), None),
         Frame(1, np.ones((1, 1)), None)
     ],
                        info=None,
                        outcomes={'test': [[None], [None], [None]]})
     expected = FrameBatch(frames=[
         Frame(1, np.ones((1, 1)), None),
         Frame(1, np.ones((1, 1)), None)
     ],
                           info=None,
                           outcomes={'test': [[None], [None]]})
     self.assertEqual(expected, batch[::2])
コード例 #10
0
    def load(self):
        video = cv2.VideoCapture(self.video_metadata.file)
        video_start = self.offset if self.offset else 0
        video.set(cv2.CAP_PROP_POS_FRAMES, video_start)

        _, frame = video.read()
        frame_ind = video_start - 1

        info = None
        if frame is not None:
            (height, width, channels) = frame.shape
            info = FrameInfo(height, width, channels, ColorSpace.BGR)

        frames = []
        while frame is not None:
            frame_ind += 1
            eva_frame = Frame(frame_ind, frame, info)
            if self.skip_frames > 0 and frame_ind % self.skip_frames != 0:
                _, frame = video.read()
                continue

            frames.append(eva_frame)
            if self.limit and frame_ind >= self.limit:
                return FrameBatch(frames, info)

            if len(frames) % self.batch_size == 0:
                yield FrameBatch(frames, info)
                frames = []

            _, frame = video.read()

        if frames:
            return FrameBatch(frames, info)
コード例 #11
0
 def create_dummy_frames(self, num_frames=NUM_FRAMES, filters=[]):
     if not filters:
         filters = range(num_frames)
     for i in filters:
         yield Frame(
             i,
             np.array(np.ones((2, 2, 3)) * 0.1 * float(i + 1) * 255,
                      dtype=np.uint8), FrameInfo(2, 2, 3, ColorSpace.BGR))
コード例 #12
0
ファイル: test_prediction.py プロジェクト: imvinod/Eva
 def test_should_return_list_of_predictions_for_each_frame_in_batch(self):
     batch = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)], info=None)
     predictions = [['A', 'B']]
     scores = [[1, 1]]
     expected = [Prediction(batch.frames[0], predictions[0], scores[0])]
     actual = Prediction.predictions_from_batch_and_lists(
         batch, predictions, scores)
     self.assertEqual(expected, actual)
コード例 #13
0
ファイル: test_prediction.py プロジェクト: imvinod/Eva
 def test_should_check_if_batch_frames_equivalent_to_number_of_scores(self):
     batch = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)], info=None)
     predictions = [['A', 'B']]
     scores = []
     self.assertRaises(
         AssertionError,
         lambda x=None: Prediction.predictions_from_batch_and_lists(
             batch, predictions, scores))
コード例 #14
0
 def test_get_outcome_from_non_existing_udf_name_returns_empty_list(self):
     batch = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)], info=None)
     self.assertEqual([], batch.get_outcomes_for('test'))
コード例 #15
0
 def test_set_outcomes_method_should_set_the_predictions_with_udf_name(
         self):
     batch = FrameBatch(frames=[Frame(1, np.ones((1, 1)), None)], info=None)
     batch.set_outcomes('test', [None])
     self.assertEqual([None], batch.get_outcomes_for('test'))