コード例 #1
0
ファイル: _base_models.py プロジェクト: sumesh1/ml_drought
def regression(
    experiment="one_month_forecast",
    include_pred_month=True,
    surrounding_pixels=None,
    explain=False,
    static="features",
    ignore_vars=None,
    predict_delta=False,
    spatial_mask=None,
    include_latlons=False,
):
    predictor = LinearRegression(
        get_data_path(),
        experiment=experiment,
        include_pred_month=include_pred_month,
        surrounding_pixels=surrounding_pixels,
        static=static,
        ignore_vars=ignore_vars,
        predict_delta=predict_delta,
        spatial_mask=spatial_mask,
        include_latlons=include_latlons,
    )
    predictor.train()
    predictor.evaluate(save_preds=True)

    # mostly to test it works
    if explain:
        predictor.explain(save_shap_values=True)
コード例 #2
0
def regression(experiment='one_month_forecast',
               include_pred_month=True,
               surrounding_pixels=1):
    # if the working directory is alread ml_drought don't need ../data
    if Path('.').absolute().as_posix().split('/')[-1] == 'ml_drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')

    predictor = LinearRegression(data_path,
                                 experiment=experiment,
                                 include_pred_month=include_pred_month,
                                 surrounding_pixels=surrounding_pixels)
    predictor.train()
    predictor.evaluate(save_preds=True)

    # mostly to test it works
    predictor.explain(save_shap_values=True)
コード例 #3
0
ファイル: models.py プロジェクト: Akumenyi/ml_drought
def regression(
    experiment="one_month_forecast",
    include_pred_month=True,
    surrounding_pixels=None,
    ignore_vars=None,
):

    data_path = get_data_path()
    predictor = LinearRegression(
        data_path,
        experiment=experiment,
        include_pred_month=include_pred_month,
        surrounding_pixels=surrounding_pixels,
        ignore_vars=ignore_vars,
        static="embeddings",
        spatial_mask=data_path /
        "interim/boundaries_preprocessed/kenya_asal_mask.nc",
    )
    predictor.train()
    predictor.evaluate(save_preds=True)

    # mostly to test it works
    predictor.explain(save_shap_values=True)
コード例 #4
0
data_path = Path("data")
l = LinearRegression(data_path)
l.train()

ln = LinearNetwork(layer_sizes=[100], data_folder=data_path)
ln.train(num_epochs=10)

# ------------------------------------------------------------------------------
# try and explain the LinearRegression model
# ------------------------------------------------------------------------------
test_arrays_loader = DataLoader(
    data_path=data_path, batch_file_size=1, shuffle_data=False, mode="test"
)
key, val = list(next(iter(test_arrays_loader)).items())[0]
explanations = l.explain(val.x)

# plot the SHAP explanations

# 1. mean spatial and temporal response
mean_expl = explanations.mean(axis=0).mean(axis=0)
x_vars = val.x_vars
df = pd.DataFrame(dict(variables=x_vars, values=mean_expl))

sns.barplot(x="variables", y="values", data=df)
fig = plt.gcf()
plt.title(f"{key} {val.y_var} mean SHAP Values for Linear Regression")
fig.savefig("scripts/mean_variable_importance_linear_regression.png", dpi=300)

# 2. mean spatial response
values = explanations.mean(axis=0).T.flatten()