コード例 #1
0
cell_list = []
molecules_list = []
id = "SD(virus)"
for sim, beta, alpha in zip(sim_list, betas, alphas):
    cells, molecules = sim.run_sim()
    SD = round(alpha / (beta**2), 2)
    cells[id] = str(SD)
    molecules[id] = str(SD)
    cell_list.append(cells)
    molecules_list.append(molecules)

cells = pd.concat(cell_list)
molecules = pd.concat(molecules_list)

g = pl.plot_timecourse(cells, hue=id, col="cell")
g.set_titles("{col_name}")
plt.show()

molecules = molecules.loc[molecules["cell"] == "Virus"]
g = sns.relplot(data=molecules,
                x="time",
                y="value",
                hue=id,
                facet_kws={"sharey": False},
                kind="line",
                legend=False,
                aspect=1.1)

g.set_titles("{col_name}")
g.set(ylabel="virus density")
コード例 #2
0
# create simulation list
sim_list = [
    Sim(name=name, params=dic, time=time, virus_model=vir_model)
    for dic in d_list
]
sim_list2 = [
    Sim(name=name, params=dic, time=time, virus_model=vir_model)
    for dic in d_list2
]

# run model
id = "ag conc."
exp1 = Simlist(sim_list, names, idtype=id)
cells, molecules = exp1.run_sim()
cells["r_chronic"] = "0"

exp2 = Simlist(sim_list2, names, idtype=id)
cells2, molecules2 = exp2.run_sim()
cells2["r_chronic"] = "10"

cells = pd.concat([cells, cells2])

pl.plot_timecourse(cells,
                   cells=["teff", "tchronic"],
                   style="r_chronic",
                   palette=["grey", "grey"],
                   col="ag conc.",
                   row="cell",
                   hue="r_chronic")
plt.show()
コード例 #3
0
           name="il2+time+ag",
           prolif_type="timer",
           myc_type="il2_ag",
           params=d4,
           virus_model=vir_model_SIR2)

simlist = [sim1, sim2, sim3, sim4]

simres = [sim.run_sim() for sim in simlist]
cells = [res[0] for res in simres]
molecules = [res[1] for res in simres]

cells = pd.concat(cells)
molecules = pd.concat(molecules)

g = pl.plot_timecourse(cells, cells=["Effector"], hue="name")
plt.show()

g = pl.plot_timecourse(molecules,
                       cells=["IL2", "Myc", "Virus"],
                       hue="name",
                       col="cell")
plt.show()

# effect of division time on model
for sim in simlist:
    arr = np.linspace(3.5, 6, 30)
    pname = "prolif_th1"
    df1, df2 = proc.run_timecourses(sim, arr, pname)

    # add division time based on prolif rate
コード例 #4
0
mysim3 = exp.Sim(name="timer",
                 params=params,
                 time=time,
                 virus_model=mdl.vir_model_gamma)
mysim4 = exp.Sim(name="timer",
                 params=params,
                 time=time,
                 virus_model=mdl.vir_model_ode)

mysims = [mysim1]
for mysim in mysims:
    # run timecourse
    cells, molecules = mysim.run_sim()

    # plot timecourse
    g = pl.plot_timecourse(cells)
    plt.show()
    g = pl.plot_timecourse(molecules)
    plt.show()

    # get readouts
    reads = proc.get_readouts(cells)

    # run pscan
    pname = "beta"
    arr = np.geomspace(0.1, 1, 12)
    myscan1 = proc.pscan(mysim, arr, pname)

    # plot pscan
    g = pl.plot_pscan(myscan1)
    plt.show()
コード例 #5
0
highlight_cells = []
highlight_mols = []

# set up arrays
pname = "beta_p"
arr_timecourse = np.geomspace(10,100, res_timecourse)
arr_pscan = np.geomspace(1,1e3, res_pscan)


for name, mymol, K_eff, param_name in zip(names, mymols, K_vals, param_names):
    # make simulation object
    sim = Sim(name=name, params=d, time=time, virus_model=vir_model, prolif_type=name)

    # plot timecourse before normalization
    cells, molecules = sim.run_sim()
    pl.plot_timecourse(df = cells, cells= ["tnaive", "teff", "tchronic", "all_cells"],
                       hue = "cell", ylim = (1,1e6))

    # plot timecourse with normalized cells
    cells2 = cells.loc[cells["cell"] == "all_cells", :]
    mynorm = np.log2(cells2["value"])
    #print(rr.get_peaktime(cells2["time"], cells2["value"]))
    #peak = rr.get_peak_height(cells2["time"], cells2["value"])
    if name != "Cntrl":
        mypeak = np.max(mynorm)
    else:
        # take the value where time is at peak in other models
        out = cells2.loc[(cells2["time"] > 2) & (cells2["time"] <= 2.2),:]
        mypeak = np.log2(out.value.iloc[0])

    cells2.loc[:, "value"] = (mynorm / mypeak)
    highlight_cells.append(cells2)
コード例 #6
0
from src.modules.pl import plot_timecourse
from src.modules.proc import pscan
from src.modules.pl import plot_pscan
import matplotlib.pyplot as plt

# init model
name = "il2"
vir_model = vir_model_const
time = np.arange(0, 200, 0.01)

# create simulation
sim = Sim(name=name, params=d, time=time, virus_model=vir_model)
pname = "vir_load"

cells, molecules = sim.run_sim()

plot_timecourse(cells, col="cell")
plt.show()

reads = get_readouts(cells, check_criteria2)

res = 30
arr = np.linspace(0, 0.2, res)
pscan = pscan(sim, arr, pname)

g = plot_pscan(pscan,
               cells=["teff"],
               value_col="val_norm",
               palette=["grey"],
               hue="cell")
plt.show()
コード例 #7
0
from src.models.virus_models import vir_model_const
import src.modules.pl as pl
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

# init model
name = "il2"  # can be "il2", "timer" "timer_il2"
vir_model = vir_model_const
time = np.arange(0, 10, 0.01)

# plot timecourse
sim = Sim(name=name, params=d, time=time, virus_model=vir_model)
cells, molecules = sim.run_sim()

pl.plot_timecourse(cells, cells=["teff"])
plt.show()

# check effect for different const. ag levels
# create dicts and set up simulations
names = ["none", "lo", "mid", "hi"]
vir_loads = [0, 0.01, 0.1, 10]
d_list = [dict(d) for i in range(len(vir_loads))]
for dic, v in zip(d_list, vir_loads):
    dic["vir_load"] = v

sim_list = [
    Sim(name=name, params=dic, time=time, virus_model=vir_model)
    for dic in d_list
]
cell_list = []