コード例 #1
0
def train(model, optimizer, data_iterator, metrics, save_summary_steps,
          num_steps, label_encoder):

    # set model to training mode
    model.train()

    # summary for current training loop and a running average object for loss
    summ = []
    loss_avg = utils.RunningAverage()
    preds_all = []
    true_all = []
    loss_all = []

    # Use tqdm for progress bar
    t = trange(num_steps)
    for i in t:

        model.train()

        # zero the gradients
        model.zero_grad()

        # fetch the next training batch
        train_batch, labels_batch = next(data_iterator)

        # compute model output and log_lik
        loss, logits = model(
            input=train_batch,
            labels=labels_batch,
            label_pad_idx=label_encoder[ClassEncoder.FEATURE_NAME].pad_idx)

        # clear previous gradients, compute gradients of all variables wrt loss
        loss.backward()

        # performs updates using calculated gradients
        optimizer.step()

        max_norm(model)

        # Evaluate summaries only once in a while
        if i % save_summary_steps == 0:

            model.eval()
            # 1. get the predictions from model
            preds = model.predict(
                logits=logits,
                mask=(train_batch[WordEncoder.FEATURE_NAME] !=
                      data_encoder[WordEncoder.FEATURE_NAME].pad_idx).float())
            labels_batch = labels_batch[
                ClassEncoder.FEATURE_NAME].data.cpu().numpy().squeeze()

            # 2. decode the predictions and the ground_truths
            labels = label_encoder[ClassEncoder.FEATURE_NAME].decode(
                labels_batch)
            preds = label_encoder[ClassEncoder.FEATURE_NAME].decode(preds)

            # 3. gather stats
            preds_all.extend(preds)
            true_all.extend(labels)
            loss_all.append(loss.item())

        # update the average loss
        loss_avg.update(loss.item())
        t.set_postfix(loss='{:05.3f}'.format(loss_avg()))

    # compute mean of all metrics in summary
    scores = {
        metric: metrics[metric](preds_all, true_all)
        for metric in metrics
    }
    scores['loss'] = np.mean(loss_all)
    metrics_string = " ; ".join("{}: {:05.3f}".format(k, v)
                                for k, v in scores.items())
    logging.info("- Train metrics: " + metrics_string)
    return scores
def train(model, optimizer, data_iterator, metrics, params, num_steps, data_encoder, label_encoder):

    # summary for current training loop and a running average object for loss
    loss_avg = utils.RunningAverage()
    preds_all = []
    true_all = []
    loss_all = []

    # Use tqdm for progress bar
    t = trange(num_steps)
    for i in t:

        model.train()

        # zero the gradients
        model.zero_grad()

        # fetch the next training batch
        train_batch, labels_batch = next(data_iterator)

        # compute model output and log_lik
        loss = model(train_X=train_batch,
                     train_Y=labels_batch,
                     mode='train')

        # clear previous gradients, compute gradients of all variables wrt loss
        loss.backward()

        # gradient clipping
        torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0)

        # performs updates using calculated gradients
        optimizer.step()

        # Evaluate summaries only once in a while
        if i % params.save_summary_steps == 0:

            model.eval()
            # 1. get the predictions from model
            preds = model.predict(train_X=train_batch, mode='train')

            labels_batch = labels_batch[EntityEncoder.FEATURE_NAME].data.cpu().numpy()
            labels_batch_trunc = [labels_batch[o_idx][:len(o)] for o_idx, o in enumerate(preds)]

            # 2. decode the predictions and the ground_truths
            labels_batch_trunc = [label_encoder[EntityEncoder.FEATURE_NAME].decode(l) for l in labels_batch_trunc]
            preds = [label_encoder[EntityEncoder.FEATURE_NAME].decode(l) for l in preds]

            # 3. gather stats
            preds_all.extend(preds)
            true_all.extend(labels_batch_trunc)
            loss_all.append(loss.item())

        # update the average loss
        loss_avg.update(loss.item())
        t.set_postfix(loss='{:05.3f}'.format(loss_avg()))

        del loss

    # compute mean of all metrics in summary
    scores = {metric: metrics[metric](preds_all, true_all) for metric in metrics}
    scores['loss'] = np.mean(loss_all)
    metrics_string = " ; ".join("{}: {}".format(k, v) for k, v in scores.items())
    logging.info("- Train metrics: " + metrics_string)
    return scores