コード例 #1
0
        desc += 'acc: %.3f, TP: %.3f, TN: %.3f, FN: %.3f, FP: %.3f' % (
            (TP.item() + TN.item()) * 1.0 / TOT.item(), TP.item() * 1.0 / TOT.item(),
            TN.item() * 1.0 / TOT.item(), FN.item() * 1.0 / TOT.item(),
            FP.item() * 1.0 / TOT.item())
        running_loss += loss.item() * n_batches
        nbre_sample += n_batches

        #print(ok)





    epoch_loss = running_loss / nbre_sample
    acc = (TP.item() + TN.item()) * 1.0 / TOT.item()
    nn_model_ref.acc = acc
    print('{} Loss: {:.4f}'.format(
        phase, epoch_loss))
    print('{} Acc: {:.4f}'.format(
        phase, acc))
    #print(desc)
    print()
    time_elapsed = time.time() - since
    print('Evaluation complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print()



from sklearn.model_selection import cross_val_score
from sklearn import svm
コード例 #2
0
        #del data_ici

        #nn_model_ref2.intermediaires[phase].append(nn_model_ref2.net.intermediare.detach().cpu().numpy().astype(np.uint8))
        #nn_model_ref2.outputs_proba[phase].append(outputs.detach().cpu().numpy().astype(np.float16))

        nbre_sample += n_batches
    epoch_loss = running_loss / nbre_sample
    acc1 = (correct1.item()) * 1.0 / TOT21.item()
    acc2 = (correct2.item()) * 1.0 / TOT22.item()
    acc3 = (correct3.item()) * 1.0 / TOT23.item()
    acc4 = (correct4.item()) * 1.0 / TOT24.item()
    #acc = (correct1.item() + correct2.item()) * 1.0 / (TOT22.item() + TOT21.item())
    acc = (correct1.item() + correct2.item() + correct3.item() +
           correct4.item()) * 1.0 / (TOT22.item() + TOT21.item() +
                                     TOT23.item() + TOT24.item())
    nn_model_ref2.acc = acc
    print('{} Loss: {:.4f}'.format(phase, epoch_loss))
    print('{} Acc: {:.4f}'.format(phase, acc1))
    print('{} Acc: {:.4f}'.format(phase, acc2))
    print('{} Acc: {:.4f}'.format(phase, acc3))
    print('{} Acc: {:.4f}'.format(phase, acc4))
    print('{} Acc FINAL: {:.4f}'.format(phase, acc))
    #print(desc)
    print()
    time_elapsed = time.time() - since
    print('Evaluation complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print()
    num1 = int(nn_model_ref2.args.nbre_sample_train_classifier /
               nn_model_ref2.batch_size)
    num2 = int(nn_model_ref2.args.nbre_sample_val_classifier /