コード例 #1
0
class Solver(BaseSolver):
    ''' Solver for training language models'''
    def __init__(self, config, paras, mode):
        super().__init__(config, paras, mode)
        # Logger settings
        self.best_loss = 10

    def fetch_data(self, data):
        ''' Move data to device, insert <sos> and compute text seq. length'''
        txt = torch.cat((torch.zeros(
            (data.shape[0], 1), dtype=torch.long), data),
                        dim=1).to(self.device)
        txt_len = torch.sum(data != 0, dim=-1)
        return txt, txt_len

    def load_data(self):
        ''' Load data for training/validation, store tokenizer and input/output shape'''
        self.tr_set, self.dv_set, self.vocab_size, self.tokenizer, msg = \
            load_textset(self.paras.njobs, self.paras.gpu,
                         self.paras.pin_memory, **self.config['data'])
        self.verbose(msg)

    def set_model(self):
        ''' Setup ASR model and optimizer '''

        # Model
        # self.model = RNNLM(self.vocab_size, **self.config['model']).to(self.device)
        self.model = Prediction(self.vocab_size,
                                **self.config['model']).to(self.device)
        self.rnnlm = RNNLM(self.vocab_size,
                           **self.config['model']).to(self.device)

        self.verbose(self.rnnlm.create_msg())
        # Losses
        self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0)
        # Optimizer
        self.optimizer = Optimizer(
            list(self.model.parameters()) + list(self.rnnlm.parameters()),
            **self.config['hparas'])
        # Enable AMP if needed
        self.enable_apex()
        # load pre-trained model
        if self.paras.load:
            self.load_ckpt()
            ckpt = torch.load(self.paras.load, map_location=self.device)
            self.model.load_state_dict(ckpt['model'])
            self.optimizer.load_opt_state_dict(ckpt['optimizer'])
            self.step = ckpt['global_step']
            self.verbose('Load ckpt from {}, restarting at step {}'.format(
                self.paras.load, self.step))

    def exec(self):
        ''' Training End-to-end ASR system '''
        self.verbose('Total training steps {}.'.format(
            human_format(self.max_step)))
        self.timer.set()

        while self.step < self.max_step:
            for data in self.tr_set:
                # Pre-step : update tf_rate/lr_rate and do zero_grad
                self.optimizer.pre_step(self.step)

                # Fetch data
                txt, txt_len = self.fetch_data(data)
                self.timer.cnt('rd')

                # Forward model
                outputs, hidden = self.model(txt[:, :-1], txt_len)
                pred = self.rnnlm(outputs)

                # Compute all objectives
                lm_loss = self.seq_loss(pred.view(-1, self.vocab_size),
                                        txt[:, 1:].reshape(-1))
                self.timer.cnt('fw')

                # Backprop
                grad_norm = self.backward(lm_loss)
                self.step += 1

                # Logger
                if self.step % self.PROGRESS_STEP == 0:
                    self.progress(
                        'Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'.
                        format(lm_loss.cpu().item(), grad_norm,
                               self.timer.show()))
                    self.write_log('entropy', {'tr': lm_loss})
                    self.write_log('perplexity',
                                   {'tr': torch.exp(lm_loss).cpu().item()})

                # Validation
                if (self.step == 1) or (self.step % self.valid_step == 0):
                    self.validate()

                # End of step
                self.timer.set()
                if self.step > self.max_step:
                    break
        self.log.close()

    def validate(self):
        # Eval mode
        self.model.eval()
        self.rnnlm.eval()
        dev_loss = []

        for i, data in enumerate(self.dv_set):
            self.progress('Valid step - {}/{}'.format(i + 1, len(self.dv_set)))
            # Fetch data
            txt, txt_len = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                outputs, hidden = self.model(txt[:, :-1], txt_len)
                pred = self.rnnlm(outputs)
            lm_loss = self.seq_loss(pred.view(-1, self.vocab_size),
                                    txt[:, 1:].reshape(-1))
            dev_loss.append(lm_loss)

        # Ckpt if performance improves
        dev_loss = sum(dev_loss) / len(dev_loss)
        dev_ppx = torch.exp(dev_loss).cpu().item()
        if dev_loss < self.best_loss:
            self.best_loss = dev_loss
            self.save_checkpoint('best_ppx.pth', 'perplexity', dev_ppx)
        self.write_log('entropy', {'dv': dev_loss})
        self.write_log('perplexity', {'dv': dev_ppx})

        # Show some example of last batch on tensorboard
        for i in range(min(len(txt), self.DEV_N_EXAMPLE)):
            if self.step == 1:
                self.write_log('true_text{}'.format(i),
                               self.tokenizer.decode(txt[i].tolist()))
            self.write_log(
                'pred_text{}'.format(i),
                self.tokenizer.decode(pred[i].argmax(dim=-1).tolist()))

        # Resume training
        self.model.train()
        self.rnnlm.train()
コード例 #2
0
class VqvaeTrainer(BaseSolver):
    def __init__(self, config, paras, mode):
        super().__init__(config, paras, mode)
        # Init settings
        self.step = 0
        self.best_tts_loss = 100.0
        self.best_per = 2.0
        self.asr_weight = self.config['hparas']['asr_weight']
        self.tts_weight = self.config['hparas']['tts_weight']
        self.unpair_text_start_step = config['hparas'][
            'unpair_text_start_step']
        self.unpair_text_weight = self.config['hparas']['unpair_text_weight']
        self.unpair_speech_start_step = config['hparas'][
            'unpair_speech_start_step']
        self.unpair_speech_weight = self.config['hparas'][
            'unpair_speech_weight']

    def fetch_data(self, iter_name):
        # Load from iterator
        mel = None
        while mel is None:
            try:
                mel, aug_mel, linear, sid, text = next(getattr(
                    self, iter_name))
            except StopIteration:
                setattr(self, iter_name,
                        iter(getattr(self, iter_name.replace('iter', 'set'))))

        # Pad to match n_frames_per_step (at least 1 frame padded)
        pad_len = self.n_frames_per_step - (mel.shape[1] %
                                            self.n_frames_per_step)
        mel = torch.cat(
            [mel, SPEC_PAD_VALUE * torch.ones_like(mel)[:, :pad_len, :]],
            dim=1)
        linear = torch.cat(
            [linear, SPEC_PAD_VALUE * torch.ones_like(linear)[:, :pad_len, :]],
            dim=1)

        return mel.to(self.device),\
               aug_mel.to(self.device),\
               linear.to(self.device),\
               text.to(self.device),\
               sid.to(self.device)

        #return mel.to(self.device, non_blocking=True),\
        #       aug_mel.to(self.device, non_blocking=True),\
        #       linear.to(self.device, non_blocking=True),\
        #       text.to(self.device, non_blocking=True),\
        #       sid.to(self.device, non_blocking=True)

    def load_data(self):
        ''' Load data for training/validation, store tokenizer and input/output shape'''
        self.verbose(['Loading data... large corpus may took a while.'])
        self.unpair_set, self.pair_set, self.dev_set, self.test_set, self.audio_converter, self.tokenizer, data_msg = \
                load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, **self.config['data'])
        self.pair_iter = iter(self.pair_set)
        self.unpair_iter = iter(self.unpair_set)
        self.dev_iter = iter(self.dev_set)
        # Feature statics
        self.n_mels, self.linear_dim = self.audio_converter.feat_dim
        self.vocab_size = self.tokenizer.vocab_size
        self.n_spkr = len(
            json.load(open(self.config['data']['corpus']['spkr_map'])))
        self.verbose(data_msg)

    def set_model(self):
        ''' Setup Audio AE-model and optimizer '''
        # Model
        self.model = VQVAE(self.n_mels, self.linear_dim, self.vocab_size,
                           self.n_spkr, **self.config['model']).to(self.device)
        self.n_frames_per_step = self.model.n_frames_per_step
        self.verbose(self.model.create_msg())

        # Objective
        self.freq_loss = partial(
            freq_loss,
            sample_rate=self.audio_converter.sr,
            n_mels=self.audio_converter.n_mels,
            loss=self.config['hparas']['freq_loss_type'],
            differential_loss=self.config['hparas']['differential_loss'],
            emphasize_linear_low=self.config['hparas']['emphasize_linear_low'])
        self.ctc_loss = torch.nn.CTCLoss()
        self.stop_loss = torch.nn.BCEWithLogitsLoss()

        # Optimizer
        self.optimizer = Optimizer(self.model.parameters(),
                                   **self.config['hparas'])
        self.verbose(self.optimizer.create_msg())
        ### ToDo : unsup first?
        self.verbose('           | ASR weight = {}\t| start step = {}'.format(
            self.asr_weight, 0))
        self.verbose('           | TTS weight = {}\t| start step = {}'.format(
            self.tts_weight, 0))
        self.verbose('           | Txt weight = {}\t| start step = {}'.format(
            self.unpair_text_weight, self.unpair_text_start_step))
        self.verbose('           | Sph weight = {}\t| start step = {}'.format(
            self.unpair_speech_weight, self.unpair_speech_start_step))
        # ToDo: load pre-trained model
        if self.paras.load:
            ckpt = torch.load(self.paras.load, map_location=self.device)
            self.model.load_state_dict(ckpt['model'])
            self.optimizer.load_opt_state_dict(ckpt['optimizer'])
            self.step = ckpt['global_step']
            self.verbose('Load ckpt from {}, restarting at step {}'.format(
                self.paras.load, self.step))

    def exec(self):
        self.verbose(
            ['Total training steps {}.'.format(human_format(self.max_step))])
        self.timer.set()
        unpair_speech_loss, unpair_text_loss, unsup_pred, unsup_trans, unsup_align = None, None, None, None, None
        ctc_nan_flag, ignore_speech_flag = 0, 0
        tok_usage, gt_usage = [], []
        cnter = {'ctc_nan': 0, 'unp_sph': 0, 'unp_txt': 0}

        while self.step < self.max_step:
            # --------------------- Load data ----------------------- #
            # Unpair setting
            unpair_mel, unpair_aug_mel, unpair_linear, unpair_text, unpair_sid = None, None, None, None, None
            post_pred, asr_post_loss = None, None  # For ASR postnet only
            use_unpair_text = self.unpair_text_weight > 0 and self.step > self.unpair_text_start_step
            use_unpair_speech = self.unpair_speech_weight > 0 and self.step > self.unpair_speech_start_step

            tf_rate = self.optimizer.pre_step(
                self.step)  # Catch the returned tf_rate if needed
            # ToDo : change # of sup. step = 2 x # of unsup. step ?
            mel, aug_mel, linear, text, sid = self.fetch_data(
                iter_name='pair_iter')

            # Load unpaired data only when use_unpair_xxx == True
            if self.step % 2 == 0:  #2
                # if True:
                # ASR first
                speech_first = True
                if use_unpair_speech:
                    unpair_mel, unpair_aug_mel, unpair_linear, unpair_text, unpair_sid = \
                                                    self.fetch_data(iter_name='unpair_iter')
            else:
                # TTS first
                speech_first = False
                if use_unpair_text:
                    cnter['unp_txt'] += 1
                    unpair_mel, unpair_aug_mel, unpair_linear, unpair_text, unpair_sid = \
                                                    self.fetch_data(iter_name='unpair_iter')

            total_loss = 0
            bs = len(mel)
            self.timer.cnt('rd')
            try:
                # ----------------------- Forward ------------------------ #
                if speech_first:
                    # Cycle : speech -> text -> speech
                    pair_prob, _, unpair_prob, unpair_latent, unpair_latent_len, pair_post_prob, _ = \
                                self.model.speech_to_text(paired_mel=aug_mel, unpaired_mel= unpair_aug_mel)

                    # Check to involve unsupervised Speech2Speech
                    if unpair_latent is not None:
                        # ASR output is the representataion for speech2speech
                        cnter['unp_sph'] += 1
                        ignore_speech_cycle = False
                        unpaired_teacher = unpair_mel
                    else:
                        # ASR output is all blank (cannot be passed to TTS) only paired text is used
                        ignore_speech_cycle = True
                        unpaired_teacher = None

                    # text -> speech
                    pair_mel_pred, pair_linear_pred, pair_align, _, \
                    unpair_mel_pred, unpair_linear_pred, unpair_align, _ =\
                                self.model.text_to_speech(paired_text = text,
                                                          paired_sid=sid,
                                                          unpaired_sid=unpair_sid,
                                                          unpaired_latent = unpair_latent,
                                                          unpaired_text= None,
                                                          unpaired_latent_len = unpair_latent_len,
                                                          paired_teacher = mel,
                                                          unpaired_teacher = unpaired_teacher,
                                                          tf_rate = tf_rate
                                                         )
                else:
                    # Cycle : text -> speech -> text
                    pair_mel_pred, pair_linear_pred, pair_align, _, \
                    unpair_mel_pred, unpair_linear_pred, unpair_align, _ =\
                                self.model.text_to_speech(paired_text=text,
                                                          paired_sid=sid,
                                                          unpaired_sid=unpair_sid,
                                                          unpaired_latent=None,
                                                          unpaired_text=unpair_text,
                                                          unpaired_latent_len=None,
                                                          paired_teacher=mel,
                                                          unpaired_teacher=None,
                                                          tf_rate=tf_rate
                                                         )
                    if use_unpair_text:
                        unpair_mel_pred = unpair_mel_pred.detach(
                        )  # Stop-grad for tts in text2text
                    pair_prob, _, unpair_prob, unpair_latent, unpair_latent_len, pair_post_prob, _ = \
                                self.model.speech_to_text(paired_mel=aug_mel,
                                                          unpaired_mel=unpair_mel_pred,  #None, #unpair_mel_pred, #None, #unpaired_mel= unpair_mel_pred,
                                                          using_fake_mel=use_unpair_text)

                # Paired ASR loss
                asr_loss = self.compute_ctcloss(aug_mel, pair_prob, text)
                if self.model.use_asr_postnet:
                    total_loss = total_loss + self.asr_weight * (
                        1 - self.model.asr_postnet_weight) * asr_loss
                    asr_post_loss = self.compute_ctcloss(aug_mel,
                                                         pair_post_prob,
                                                         text,
                                                         apply_log=False)
                    total_loss = total_loss + self.asr_weight * self.model.asr_postnet_weight * asr_post_loss
                else:
                    total_loss = total_loss + self.asr_weight * asr_loss
                if math.isnan(asr_loss) or math.isinf(asr_loss):
                    cnter['ctc_nan'] += 1
                    asr_loss = 0

                # Paired TTS loss
                mel_loss = self.freq_loss(pair_mel_pred, mel)
                linear_loss = self.freq_loss(pair_linear_pred, linear)
                tts_loss = mel_loss + linear_loss
                total_loss = total_loss + self.tts_weight * tts_loss

                # Unpaired loss
                if speech_first:
                    # Unpaired speech reconstruction loss
                    if not ignore_speech_cycle:
                        unpair_speech_loss = self.freq_loss(unpair_mel_pred, unpair_mel) +\
                                            self.freq_loss(unpair_linear_pred, unpair_linear)
                        #total_loss += self.unpair_speech_weight*unpair_speech_loss
                        if self.step > self.unpair_speech_start_step:
                            total_loss += self.unpair_speech_weight * unpair_speech_loss
                elif use_unpair_text:
                    # Unpaired text reconstruction loss
                    ctc_input = (unpair_prob + EPS).transpose(0, 1).log()
                    if self.paras.actual_len:
                        asr_input_len = (unpair_text != 0).sum(
                            dim=-1) * FRAME_PHN_RATIO
                        asr_input_len = asr_input_len + asr_input_len % self.model.n_frames_per_step
                        ctc_len = 1 + (asr_input_len //
                                       self.model.time_reduce_factor)
                    else:
                        ctc_len = torch.LongTensor(
                            [unpair_prob.shape[1]] *
                            unpair_prob.shape[0]).to(device=self.device)
                    unpair_text_loss = self.ctc_loss(
                        ctc_input,
                        unpair_text.to_sparse().values(), ctc_len,
                        torch.sum(unpair_text != 0, dim=-1))
                    if math.isnan(unpair_text_loss) or math.isinf(
                            unpair_text_loss):
                        cnter['ctc_nan'] += 1
                        unpair_text_loss = 0
                    total_loss += self.unpair_text_weight * unpair_text_loss

                # VQ-loss
                # if vq_loss>0:
                #     total_loss += self.model.vq_weight*vq_loss
                # if commit_loss>0:
                #     total_loss += self.model.commit_weight*commit_loss

                # Statics (over unsup. speech only)
                if speech_first and use_unpair_speech:
                    unsup_pred = unpair_prob.argmax(dim=-1).cpu()
                    unsup_trans = unpair_text.cpu()
                    tok_usage += unsup_pred.flatten().tolist()
                    gt_usage += unsup_trans.flatten().tolist()
                    if unpair_align is not None:
                        unsup_align = unpair_align.detach().cpu()
                    else:
                        unsup_align = [None] * bs

                self.timer.cnt('fw')

                # ----------------------- Backward ------------------------ #
                grad_norm = self.backward(total_loss)
                # For debugging
                # if math.isnan(grad_norm):
                # import IPython
                # IPython.embed()
                self.step += 1

                # Log
                if (self.step == 1) or (self.step % self._PROGRESS_STEP == 0):
                    self.progress('Tr stat | Loss - {:.2f} (CTC-nan/unp-sph/unp-txt={}/{}/{}) | Grad. Norm - {:.2f} | {} '\
                                  .format(total_loss.cpu().item(), cnter['ctc_nan'], cnter['unp_sph'], cnter['unp_txt'],
                                          grad_norm, self.timer.show()))
                    self.write_log(
                        'txt_loss', {
                            'pair':
                            asr_loss.item() if asr_loss is not None else None,
                            'unpair':
                            unpair_text_loss.item()
                            if unpair_text_loss is not None else None,
                            'post':
                            asr_post_loss.item()
                            if asr_post_loss is not None else None
                        })
                    self.write_log(
                        'speech_loss', {
                            'pair':
                            tts_loss.item() if tts_loss is not None else None,
                            'unpair':
                            unpair_speech_loss.item()
                            if unpair_speech_loss is not None else None
                        })
                    #self.write_log('stop_err',{'tr':stop_err})
                    # if commit_loss>0:
                    #     self.write_log('commit',{'tr':commit_loss})
                    # if vq_loss>0:
                    #     self.write_log('commit',{'vq':vq_loss})
                    # self.write_log('temperature',{'temp':self.model.codebook.temp.data})
                    # self.write_log('ppx',{'tr':cal_ppx(p_code)})
                    for k in cnter.keys():
                        cnter[k] = 0
                    if (self.step == 1) or (self.step % ATTENTION_PLOT_STEP
                                            == 0):
                        align = pair_align.cpu()  # align shape BxDsxEs
                        sup_pred = pair_prob.argmax(dim=-1).cpu()
                        sup_trans = text.cpu()
                        if self.model.use_asr_postnet:
                            post_pred = pair_post_prob.argmax(dim=-1).cpu()
                        self.write_log(
                            'per', {
                                'pair': cal_per(sup_pred, sup_trans),
                                'unpair': cal_per(unsup_pred, unsup_trans),
                                'post': cal_per(post_pred, sup_trans)
                            })
                        self.write_log(
                            'unpair_hist',
                            data_to_bar(tok_usage, gt_usage, self.vocab_size,
                                        self.tokenizer._vocab_list))
                        for i in range(LISTEN_N_EXAMPLES):
                            self.write_log(
                                'pair_align{}'.format(i),
                                feat_to_fig(align[i].cpu().detach()))
                            if unsup_align is not None and unsup_align[
                                    i] is not None:
                                self.write_log(
                                    'unpair_align{}'.format(i),
                                    feat_to_fig(unsup_align[i].cpu().detach()))
                        tok_usage, gt_usage = [], []

                # Validation
                if (self.step == 1) or (self.step % self.valid_step == 0):
                    self.validate()

                # End of step
                self.timer.set()
                if self.step > self.max_step: break

            except RuntimeError as e:
                if 'out of memory' in str(e):
                    self.verbose('WARNING: ran out of memory, retrying batch')
                    for p in self.model.parameters():
                        if p.grad is not None:
                            del p.grad  # free some memory
                    torch.cuda.empty_cache()
                else:
                    print(repr(e))
                    errorout()

    def validate(self):
        # Eval mode
        self.model.eval()
        dev_tts_loss, dev_per, dev_post_per, dev_stop_err = [], [], [], []

        for i in range(len(self.dev_set)):
            self.progress('Valid step - {}/{}'.format(i + 1,
                                                      len(self.dev_set)))
            # Fetch data
            mel, aug_mel, linear, text, sid = self.fetch_data(
                iter_name='dev_iter')

            # Forward model
            with torch.no_grad():
                # test ASR
                pair_prob, _, _, _, _, pair_post_prob, _ = self.model.speech_to_text(
                    paired_mel=mel, unpaired_mel=None)
                dev_per.append(cal_per(pair_prob, text))
                if pair_post_prob is not None:
                    dev_post_per.append((cal_per(pair_post_prob, text)))

                # test TTS (Note: absolute dec step now)
                pair_mel_pred, pair_linear_pred, pair_align, _, _, _, _, _ = \
                        self.model.text_to_speech(paired_text = text,
                                                  paired_sid=sid,
                                                  unpaired_sid=None,
                                                  unpaired_latent=None,
                                                  unpaired_text=None,
                                                  unpaired_latent_len=None,
                                                  paired_teacher=mel.shape[1],
                                                  unpaired_teacher=None,
                                                  tf_rate=0.0)
                dev_tts_loss.append(
                    self.freq_loss(pair_mel_pred, mel) +
                    self.freq_loss(pair_linear_pred, linear))

            if i == len(self.dev_set) // 2:
                # pick n longest samples in the median batch
                sample_txt = text.cpu()[:LISTEN_N_EXAMPLES]
                hyp = pair_prob.argmax(dim=-1).cpu()[:LISTEN_N_EXAMPLES]
                mel_p = pair_mel_pred.cpu()[:LISTEN_N_EXAMPLES]
                linear_p = pair_linear_pred.cpu()[:LISTEN_N_EXAMPLES]
                #post_mel_p = tts_pred.cpu()[:LISTEN_N_EXAMPLES,1] # PostNet product
                align_p = pair_align.cpu()[:LISTEN_N_EXAMPLES]
                sample_mel = mel.cpu()[:LISTEN_N_EXAMPLES]
                sample_linear = linear.cpu()[:LISTEN_N_EXAMPLES]

        # Ckpt if performance improves
        dev_tts_loss = sum(dev_tts_loss) / len(dev_tts_loss)
        dev_per = sum(dev_per) / len(dev_per)
        dev_post_per = sum(dev_post_per) / len(dev_post_per) if len(
            dev_post_per) > 0 else None
        #dev_stop_err = sum(dev_stop_err)/len(dev_stop_err)

        if self.paras.store_best_per:
            if dev_per < self.best_per:
                self.best_per = dev_per
                self.save_checkpoint('best_per.pth', dev_per)
            if (dev_post_per is not None) and (dev_post_per < self.best_per):
                self.best_per = dev_post_per
                self.save_checkpoint('best_post_per.pth', dev_post_per)
        else:
            if dev_tts_loss < self.best_tts_loss:
                self.best_tts_loss = dev_tts_loss
                if self.step > 1:
                    self.save_checkpoint('tts_{}.pth'.format(self.step),
                                         dev_tts_loss)
            if dev_per < self.best_per:
                self.best_per = dev_per
                if self.step > 1:
                    self.save_checkpoint('asr_{}.pth'.format(self.step),
                                         dev_per)
            if (dev_post_per is not None) and (dev_post_per < self.best_per):
                self.best_per = dev_post_per
                self.save_checkpoint(
                    'best_post_per.pth', dev_post_per
                )  # Note: didnot recode best per from postnet or not

        if ((self.step > 1) and
            (self.step % CKPT_STEP == 0)) and not self.paras.store_best_per:
            # Regular ckpt
            self.save_checkpoint('step_{}.pth'.format(self.step), dev_tts_loss)

        # Logger
        # Write model output (no G-F-lim if picking per)
        for i, (m_p, l_p, a_p,
                h_p) in enumerate(zip(mel_p, linear_p, align_p, hyp)):
            self.write_log('hyp_text{}'.format(i),
                           self.tokenizer.decode(h_p.tolist()))
            self.write_log('mel_spec{}'.format(i), feat_to_fig(m_p))
            self.write_log('linear_spec{}'.format(i), feat_to_fig(l_p))
            self.write_log('dv_align{}'.format(i), feat_to_fig(a_p))
            if not self.paras.store_best_per:
                self.write_log('mel_wave{}'.format(i),
                               self.audio_converter.feat_to_wave(m_p))
                self.write_log('linear_wave{}'.format(i),
                               self.audio_converter.feat_to_wave(l_p))
        # Write ground truth
        if self.step == 1:
            for i, (mel, linear, gt_txt) in enumerate(
                    zip(sample_mel, sample_linear, sample_txt)):
                self.write_log('truth_text{}'.format(i),
                               self.tokenizer.decode(gt_txt.tolist()))
                self.write_log('mel_spec{}_gt'.format(i), feat_to_fig(mel))
                self.write_log('mel_wave{}_gt'.format(i),
                               self.audio_converter.feat_to_wave(mel))
                self.write_log('linear_spec{}_gt'.format(i),
                               feat_to_fig(linear))
                self.write_log('linear_wave{}_gt'.format(i),
                               self.audio_converter.feat_to_wave(linear))

        self.write_log('speech_loss', {'dev': dev_tts_loss})
        self.write_log('per', {'dev': dev_per, 'dev_post': dev_post_per})
        self.write_log('codebook', (self.model.codebook.embedding.weight.data,
                                    self.tokenizer._vocab_list))
        #self.write_log('stop_err',{'dev':dev_stop_err})
        # Resume training
        self.model.train()

    def compute_ctcloss(self,
                        model_input,
                        model_output,
                        target,
                        apply_log=True):
        if apply_log:
            ctc_input = (model_output + EPS).transpose(0, 1).log()
        else:
            ctc_input = model_output.transpose(0, 1)

        if self.paras.actual_len:
            asr_input_len = torch.sum(
                (model_input == SPEC_PAD_VALUE).long().sum(dim=-1) !=
                model_input.shape[-1],
                dim=-1)
            ctc_len = asr_input_len // self.model.time_reduce_factor
            ctc_target = target
        else:
            ctc_target = target.to_sparse().values()
            ctc_len = torch.LongTensor(
                [model_output.shape[1]] *
                model_output.shape[0]).to(device=self.device)
        return self.ctc_loss(ctc_input, ctc_target, ctc_len,
                             torch.sum(target != 0, dim=-1))
コード例 #3
0
class Solver(BaseSolver):
    ''' Solver for training'''
    def __init__(self, config, paras, mode):
        super().__init__(config, paras, mode)
        # Logger settings
        self.best_wer = {'att': 3.0, 'ctc': 3.0}
        # Curriculum learning affects data loader
        self.curriculum = self.config['hparas']['curriculum']

    def fetch_data(self, data):
        ''' Move data to device and compute text seq. length'''
        _, feat, feat_len, txt = data
        feat = feat.to(self.device)
        feat_len = feat_len.to(self.device)
        txt = txt.to(self.device)
        txt_len = torch.sum(txt != 0, dim=-1)

        return feat, feat_len, txt, txt_len

    def load_data(self):
        ''' Load data for training/validation, store tokenizer and input/output shape'''
        self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg = \
            load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                         self.curriculum > 0, **self.config['data'])
        self.verbose(msg)

    def set_model(self):
        ''' Setup ASR model and optimizer '''
        # Model
        init_adadelta = self.config['hparas']['optimizer'] == 'Adadelta'
        self.model = ASR(self.feat_dim, self.vocab_size, init_adadelta,
                         **self.config['model']).to(self.device)
        self.verbose(self.model.create_msg())
        model_paras = [{'params': self.model.parameters()}]

        # Losses
        self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0)
        # Note: zero_infinity=False is unstable?
        self.ctc_loss = torch.nn.CTCLoss(blank=0, zero_infinity=False)

        # Plug-ins
        self.emb_fuse = False
        self.emb_reg = ('emb'
                        in self.config) and (self.config['emb']['enable'])
        if self.emb_reg:
            from src.plugin import EmbeddingRegularizer
            self.emb_decoder = EmbeddingRegularizer(
                self.tokenizer, self.model.dec_dim,
                **self.config['emb']).to(self.device)
            model_paras.append({'params': self.emb_decoder.parameters()})
            self.emb_fuse = self.emb_decoder.apply_fuse
            if self.emb_fuse:
                self.seq_loss = torch.nn.NLLLoss(ignore_index=0)
            self.verbose(self.emb_decoder.create_msg())

        # Optimizer
        self.optimizer = Optimizer(model_paras, **self.config['hparas'])
        self.verbose(self.optimizer.create_msg())

        # Enable AMP if needed
        self.enable_apex()

        # Automatically load pre-trained model if self.paras.load is given
        self.load_ckpt()

        # ToDo: other training methods

    def exec(self):
        ''' Training End-to-end ASR system '''
        self.verbose('Total training steps {}.'.format(
            human_format(self.max_step)))
        ctc_loss, att_loss, emb_loss = None, None, None
        n_epochs = 0
        self.timer.set()

        while self.step < self.max_step:
            # Renew dataloader to enable random sampling
            if self.curriculum > 0 and n_epochs == self.curriculum:
                self.verbose(
                    'Curriculum learning ends after {} epochs, starting random sampling.'
                    .format(n_epochs))
                self.tr_set, _, _, _, _, _ = \
                    load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                                 False, **self.config['data'])
            for data in self.tr_set:
                # Pre-step : update tf_rate/lr_rate and do zero_grad
                tf_rate = self.optimizer.pre_step(self.step)
                total_loss = 0

                # Fetch data
                feat, feat_len, txt, txt_len = self.fetch_data(data)
                self.timer.cnt('rd')

                # Forward model
                # Note: txt should NOT start w/ <sos>
                ctc_output, encode_len, att_output, att_align, dec_state = \
                    self.model(feat, feat_len, max(txt_len), tf_rate=tf_rate,
                               teacher=txt, get_dec_state=self.emb_reg)

                # Plugins
                if self.emb_reg:
                    emb_loss, fuse_output = self.emb_decoder(dec_state,
                                                             att_output,
                                                             label=txt)
                    total_loss += self.emb_decoder.weight * emb_loss

                # Compute all objectives
                if ctc_output is not None:
                    if self.paras.cudnn_ctc:
                        ctc_loss = self.ctc_loss(
                            ctc_output.transpose(0, 1),
                            txt.to_sparse().values().to(device='cpu',
                                                        dtype=torch.int32),
                            [ctc_output.shape[1]] * len(ctc_output),
                            txt_len.cpu().tolist())
                    else:
                        ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1),
                                                 txt, encode_len, txt_len)
                    total_loss += ctc_loss * self.model.ctc_weight

                if att_output is not None:
                    b, t, _ = att_output.shape
                    att_output = fuse_output if self.emb_fuse else att_output
                    att_loss = self.seq_loss(
                        att_output.contiguous().view(b * t, -1),
                        txt.contiguous().view(-1))
                    total_loss += att_loss * (1 - self.model.ctc_weight)

                self.timer.cnt('fw')

                # Backprop
                grad_norm = self.backward(total_loss)
                self.step += 1

                # Logger
                if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0):
                    self.progress(
                        'Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'.
                        format(total_loss.cpu().item(), grad_norm,
                               self.timer.show()))
                    self.write_log('loss', {
                        'tr_ctc': ctc_loss,
                        'tr_att': att_loss
                    })
                    self.write_log('emb_loss', {'tr': emb_loss})
                    self.write_log(
                        'wer', {
                            'tr_att':
                            cal_er(self.tokenizer, att_output, txt),
                            'tr_ctc':
                            cal_er(self.tokenizer, ctc_output, txt, ctc=True)
                        })
                    if self.emb_fuse:
                        if self.emb_decoder.fuse_learnable:
                            self.write_log(
                                'fuse_lambda',
                                {'emb': self.emb_decoder.get_weight()})
                        self.write_log('fuse_temp',
                                       {'temp': self.emb_decoder.get_temp()})

                # Validation
                if (self.step == 1) or (self.step % self.valid_step == 0):
                    self.validate()

                # End of step
                # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354
                torch.cuda.empty_cache()
                self.timer.set()
                if self.step > self.max_step:
                    break
            n_epochs += 1
        self.log.close()

    def validate(self):
        # Eval mode
        self.model.eval()
        if self.emb_decoder is not None:
            self.emb_decoder.eval()
        dev_wer = {'att': [], 'ctc': []}

        for i, data in enumerate(self.dv_set):
            self.progress('Valid step - {}/{}'.format(i + 1, len(self.dv_set)))
            # Fetch data
            feat, feat_len, txt, txt_len = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                ctc_output, encode_len, att_output, att_align, dec_state = \
                    self.model(feat, feat_len, int(max(txt_len)*self.DEV_STEP_RATIO),
                               emb_decoder=self.emb_decoder)

            dev_wer['att'].append(cal_er(self.tokenizer, att_output, txt))
            dev_wer['ctc'].append(
                cal_er(self.tokenizer, ctc_output, txt, ctc=True))

            # Show some example on tensorboard
            if i == len(self.dv_set) // 2:
                for i in range(min(len(txt), self.DEV_N_EXAMPLE)):
                    if self.step == 1:
                        self.write_log('true_text{}'.format(i),
                                       self.tokenizer.decode(txt[i].tolist()))
                    if att_output is not None:
                        self.write_log(
                            'att_align{}'.format(i),
                            feat_to_fig(att_align[i, 0, :, :].cpu().detach()))
                        self.write_log(
                            'att_text{}'.format(i),
                            self.tokenizer.decode(
                                att_output[i].argmax(dim=-1).tolist()))
                    if ctc_output is not None:
                        self.write_log(
                            'ctc_text{}'.format(i),
                            self.tokenizer.decode(
                                ctc_output[i].argmax(dim=-1).tolist(),
                                ignore_repeat=True))

        # Ckpt if performance improves
        for task in ['att', 'ctc']:
            dev_wer[task] = sum(dev_wer[task]) / len(dev_wer[task])
            if dev_wer[task] < self.best_wer[task]:
                self.best_wer[task] = dev_wer[task]
                self.save_checkpoint('best_{}.pth'.format(task), 'wer',
                                     dev_wer[task])
            self.write_log('wer', {'dv_' + task: dev_wer[task]})
        self.save_checkpoint('latest.pth',
                             'wer',
                             dev_wer['att'],
                             show_msg=False)

        # Resume training
        self.model.train()
        if self.emb_decoder is not None:
            self.emb_decoder.train()
コード例 #4
0
class Solver(BaseSolver):
    ''' Solver for training'''

    def __init__(self, config, paras, mode):
        super().__init__(config, paras, mode)

        # ToDo : support tr/eval on different corpus
        assert self.config['data']['corpus']['name'] == self.src_config['data']['corpus']['name']
        self.config['data']['corpus']['path'] = self.src_config['data']['corpus']['path']
        self.config['data']['corpus']['bucketing'] = False

        # The follow attribute should be identical to training config
        self.config['data']['audio'] = self.src_config['data']['audio']
        self.config['data']['corpus']['train_split'] = self.src_config['data']['corpus']['train_split']
        self.config['data']['text'] = self.src_config['data']['text']
        self.tokenizer = load_text_encoder(**self.config['data']['text'])
        self.config['model'] = self.src_config['model']
        self.finetune_first = 5
        self.best_wer = {'att': 3.0, 'ctc': 3.0}

        # Output file
        self.output_file = str(self.ckpdir)+'_{}_{}.csv'

        # Override batch size for beam decoding
        self.greedy = self.config['decode']['beam_size'] == 1
        self.dealer = Datadealer(self.config['data']['audio'])
        self.ctc = self.config['decode']['ctc_weight'] == 1.0
        if not self.greedy:
            self.config['data']['corpus']['batch_size'] = 1
        else:
            # ToDo : implement greedy
            raise NotImplementedError

        # Logger settings
        self.logdir = os.path.join(paras.logdir, self.exp_name)
        self.log = SummaryWriter(
            self.logdir, flush_secs=self.TB_FLUSH_FREQ)
        self.timer = Timer()

    def fetch_data(self, data):
        ''' Move data to device and compute text seq. length'''
        _, feat, feat_len, txt = data
        feat = feat.to(self.device)
        feat_len = feat_len.to(self.device)
        txt = txt.to(self.device)
        txt_len = torch.sum(txt != 0, dim=-1)

        return feat, feat_len, txt, txt_len

    def load_data(self, batch_size=7):
        ''' Load data for training/validation, store tokenizer and input/output shape'''
        prev_batch_size = self.config['data']['corpus']['batch_size']
        self.config['data']['corpus']['batch_size'] = batch_size
        self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg = \
            load_dataset(self.paras.njobs, self.paras.gpu,
                         self.paras.pin_memory, False, **self.config['data'])
        self.config['data']['corpus']['batch_size'] = prev_batch_size
        self.verbose(msg)

    def set_model(self):
        ''' Setup ASR model '''
        # Model
        self.feat_dim = 120
        self.vocab_size = 46 
        init_adadelta = True
        ''' Setup ASR model and optimizer '''
        # Model
        # init_adadelta = self.config['hparas']['optimizer'] == 'Adadelta'
        self.model = ASR(self.feat_dim, self.vocab_size, init_adadelta, **
                         self.src_config['model']).to(self.device)
        self.verbose(self.model.create_msg())

        if self.finetune_first>0:
            names = ["encoder.layers.%d"%i for i in range(self.finetune_first)]
            model_paras = [{"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in names)]}]
        else:
            model_paras = [{'params': self.model.parameters()}]

        # Losses
        self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0)
        # Note: zero_infinity=False is unstable?
        self.ctc_loss = torch.nn.CTCLoss(blank=0, zero_infinity=False)

        # Plug-ins
        self.emb_fuse = False
        self.emb_reg = ('emb' in self.config) and (
            self.config['emb']['enable'])
        if self.emb_reg:
            from src.plugin import EmbeddingRegularizer
            self.emb_decoder = EmbeddingRegularizer(
                self.tokenizer, self.model.dec_dim, **self.config['emb']).to(self.device)
            model_paras.append({'params': self.emb_decoder.parameters()})
            self.emb_fuse = self.emb_decoder.apply_fuse
            if self.emb_fuse:
                self.seq_loss = torch.nn.NLLLoss(ignore_index=0)
            self.verbose(self.emb_decoder.create_msg())

        # Optimizer
        self.optimizer = Optimizer(model_paras, **self.src_config['hparas'])
        self.verbose(self.optimizer.create_msg())

        # Enable AMP if needed
        self.enable_apex()

        # Automatically load pre-trained model if self.paras.load is given
        self.load_ckpt()
        # Beam decoder
        self.decoder = BeamDecoder(
            self.model, self.emb_decoder, **self.config['decode'])
        self.verbose(self.decoder.create_msg())
        # del self.model
        # del self.emb_decoder
        self.decoder.to(self.device)

    def exec(self):
        ''' Testing End-to-end ASR system '''
        while True:
            try:
                filename = input("Input wav file name: ")
                if filename == "exit":
                    return
                feat, feat_len = self.dealer(filename)
                feat = feat.to(self.device)
                feat_len = feat_len.to(self.device)
                # Decode
                with torch.no_grad():
                    hyps = self.decoder(feat, feat_len)

                hyp_seqs = [hyp.outIndex for hyp in hyps]
                hyp_txts = [self.tokenizer.decode(hyp, ignore_repeat=self.ctc) for hyp in hyp_seqs]
                for txt in hyp_txts:
                    print(txt)
            except:
                print("Invalid file")
                pass

    def recognize(self, filename):
        try:
            feat, feat_len = self.dealer(filename)
            feat = feat.to(self.device)
            feat_len = feat_len.to(self.device)
            # Decode
            with torch.no_grad():
                hyps = self.decoder(feat, feat_len)
            
            hyp_seqs = [hyp.outIndex for hyp in hyps]
            hyp_txts = [self.tokenizer.decode(hyp, ignore_repeat=self.ctc) for hyp in hyp_seqs]
            return hyp_txts[0]
        except Exception as e:
            print(e)
            app.logger.debug(e)
            return "Invalid file"

    def fetch_finetune_data(self, filename, fixed_text):
        feat, feat_len = self.dealer(filename)
        feat = feat.to(self.device)
        feat_len = feat_len.to(self.device)
        text = self.tokenizer.encode(fixed_text)
        text = torch.tensor(text).to(self.device)
        text_len = len(text)
        return [feat, feat_len, text, text_len]

    def merge_batch(self, main_batch, attach_batch):
        max_feat_len = max(main_batch[1])
        max_text_len = max(main_batch[3])
        if attach_batch[0].shape[1] > max_feat_len:
            # reduce extra long example
            attach_batch[0] = attach_batch[0][:,:max_feat_len]
            attach_batch[1][0] = max_feat_len
        else:
            # pad to max_feat_len
            padding = torch.zeros(1, max_feat_len - attach_batch[0].shape[1], attach_batch[0].shape[2], dtype=attach_batch[0].dtype).to(self.device)
            attach_batch[0] = torch.cat([attach_batch[0], padding], dim=1)
        if attach_batch[2].shape[0] > max_text_len:
            attach_batch[2] = attach_batch[2][:max_text_len]
            main_batch[3][0] = max_text_len
        else:
            padding = torch.zeros(max_text_len - attach_batch[2].shape[0], dtype=attach_batch[2].dtype).to(self.device)
            try:
                attach_batch[2] = torch.cat([attach_batch[2], padding], dim=0).unsqueeze(0)
            except:
                pdb.set_trace()
        new_batch = (
            torch.cat([main_batch[0], attach_batch[0]], dim=0),
            torch.cat([main_batch[1], attach_batch[1]], dim=0),
            torch.cat([main_batch[2], attach_batch[2]], dim=0),
            torch.cat([main_batch[3], torch.tensor([attach_batch[3]]).to(self.device)], dim=0)
        )
        return new_batch
            


    def finetune(self, filename, fixed_text, max_step=5):
        # Load data for finetune
        self.verbose('Total training steps {}.'.format(
            human_format(max_step)))
        ctc_loss, att_loss, emb_loss = None, None, None
        n_epochs = 0
        accum_count = 0
        self.timer.set()
        step = 0
        for data in self.tr_set:
            # Pre-step : update tf_rate/lr_rate and do zero_grad
            if max_step == 0:
                break
            tf_rate = self.optimizer.pre_step(400000)
            total_loss = 0

            # Fetch data
            finetune_data = self.fetch_finetune_data(filename, fixed_text)
            main_batch = self.fetch_data(data)
            new_batch = self.merge_batch(main_batch, finetune_data)
            feat, feat_len, txt, txt_len = new_batch
            self.timer.cnt('rd')

            # Forward model
            # Note: txt should NOT start w/ <sos>
            ctc_output, encode_len, att_output, att_align, dec_state = \
                self.model(feat, feat_len, max(txt_len), tf_rate=tf_rate,
                            teacher=txt, get_dec_state=self.emb_reg)

            # Plugins
            if self.emb_reg:
                emb_loss, fuse_output = self.emb_decoder(
                    dec_state, att_output, label=txt)
                total_loss += self.emb_decoder.weight*emb_loss

            # Compute all objectives
            if ctc_output is not None:
                if self.paras.cudnn_ctc:
                    ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1),
                                                txt.to_sparse().values().to(device='cpu', dtype=torch.int32),
                                                [ctc_output.shape[1]] *
                                                len(ctc_output),
                                                txt_len.cpu().tolist())
                else:
                    ctc_loss = self.ctc_loss(ctc_output.transpose(
                        0, 1), txt, encode_len, txt_len)
                total_loss += ctc_loss*self.model.ctc_weight

            if att_output is not None:
                b, t, _ = att_output.shape
                att_output = fuse_output if self.emb_fuse else att_output
                att_loss = self.seq_loss(
                    att_output.contiguous().view(b*t, -1), txt.contiguous().view(-1))
                total_loss += att_loss*(1-self.model.ctc_weight)

            self.timer.cnt('fw')

            # Backprop
            grad_norm = self.backward(total_loss)
            step += 1

            # Logger
            self.progress('Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'
                        .format(total_loss.cpu().item(), grad_norm, self.timer.show()))
            self.write_log(
                'loss', {'tr_ctc': ctc_loss, 'tr_att': att_loss})
            self.write_log('emb_loss', {'tr': emb_loss})
            self.write_log('wer', {'tr_att': cal_er(self.tokenizer, att_output, txt),
                                'tr_ctc': cal_er(self.tokenizer, ctc_output, txt, ctc=True)})
            if self.emb_fuse:
                if self.emb_decoder.fuse_learnable:
                    self.write_log('fuse_lambda', {
                                'emb': self.emb_decoder.get_weight()})
                self.write_log(
                    'fuse_temp', {'temp': self.emb_decoder.get_temp()})

            # End of step
            # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354
            torch.cuda.empty_cache()
            self.timer.set()
            if step > max_step:
                break
        ret = self.validate()
        self.log.close()
        return ret


    def validate(self):
        # Eval mode
        self.model.eval()
        if self.emb_decoder is not None:
            self.emb_decoder.eval()
        dev_wer = {'att': [], 'ctc': []}

        for i, data in enumerate(self.dv_set):
            self.progress('Valid step - {}/{}'.format(i+1, len(self.dv_set)))
            # Fetch data
            feat, feat_len, txt, txt_len = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                ctc_output, encode_len, att_output, att_align, dec_state = \
                    self.model(feat, feat_len, int(max(txt_len)*self.DEV_STEP_RATIO),
                               emb_decoder=self.emb_decoder)

            dev_wer['att'].append(cal_er(self.tokenizer, att_output, txt))
            dev_wer['ctc'].append(cal_er(self.tokenizer, ctc_output, txt, ctc=True))

            # Show some example on tensorboard
            if i == len(self.dv_set)//2:
                for i in range(min(len(txt), self.DEV_N_EXAMPLE)):
                    if True:
                        self.write_log('true_text{}'.format(
                            i), self.tokenizer.decode(txt[i].tolist()))
                    if att_output is not None:
                        self.write_log('att_align{}'.format(i), feat_to_fig(
                            att_align[i, 0, :, :].cpu().detach()))
                        self.write_log('att_text{}'.format(i), self.tokenizer.decode(
                            att_output[i].argmax(dim=-1).tolist()))
                    if ctc_output is not None:
                        self.write_log('ctc_text{}'.format(i), self.tokenizer.decode(ctc_output[i].argmax(dim=-1).tolist(),
                                                                                     ignore_repeat=True))

        # Skip save model here
        # Ckpt if performance improves
        to_prints = []
        for task in ['att', 'ctc']:
            dev_wer[task] = sum(dev_wer[task]) / len(dev_wer[task])
            if dev_wer[task] < self.best_wer[task]:
                to_print = f"WER of {task}: {dev_wer[task]} < prev best ({self.best_wer[task]})"
                self.best_wer[task] = dev_wer[task]
            else:
                to_print = f"WER of {task}: {dev_wer[task]} >= prev best ({self.best_wer[task]})"
            print(to_print, flush=True)
            to_prints.append(to_print)
        #         self.save_checkpoint('best_{}.pth'.format(task), 'wer', dev_wer[task])
            self.write_log('wer', {'dv_'+task: dev_wer[task]})
        # self.save_checkpoint('latest.pth', 'wer', dev_wer['att'], show_msg=False)

        # Resume training
        self.model.train()
        if self.emb_decoder is not None:
            self.emb_decoder.train()
        return '\n'.join(to_prints)
コード例 #5
0
ファイル: train_asr.py プロジェクト: ttaoREtw/Multi-CTC
class Solver(BaseSolver):
    ''' Solver for training'''
    def __init__(self, config, paras, mode):
        super().__init__(config, paras, mode)
        # Logger settings
        self.best_wer = {'ctc': 3.0}
        self.best_per = {'ctc': 3.0}
        # Curriculum learning affects data loader
        self.curriculum = self.config['hparas']['curriculum']

    def load_data(self):
        ''' Load data for training/validation, store tokenizer and input/output shape'''
        self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg= \
            load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                         self.curriculum > 0, **self.config['data'])
        self.verbose(msg)

    def transfer_weight(self):
        # Transfer optimizer
        ckpt_path = self.config['data']['transfer'].pop('src_ckpt')
        ckpt = torch.load(ckpt_path, map_location=self.device)

        #optim_ckpt = ckpt['optimizer']
        #for ctc_final_related_param in optim_ckpt['param_groups'][0]['params'][-2:]:
        #    optim_ckpt['state'].pop(ctc_final_related_param)

        #self.optimizer.load_opt_state_dict(optim_ckpt)

        # Load weights
        msg = self.model.transfer_with_mapping(ckpt,
                                               self.config['data']['transfer'],
                                               self.tokenizer)
        del ckpt

        self.verbose(msg)

    def set_model(self):
        ''' Setup ASR model and optimizer '''
        # Model
        init_adadelta = self.config['hparas']['optimizer'] == 'Adadelta'
        self.model = ASR(self.feat_dim, self.vocab_size, init_adadelta,
                         **self.config['model']).to(self.device)
        self.verbose(self.model.create_msg())
        model_paras = [{'params': self.model.parameters()}]

        # Losses
        # Note: zero_infinity=False is unstable?
        self.ctc_loss = torch.nn.CTCLoss(blank=0, zero_infinity=False)

        self.eval_target = 'phone' if self.config['data']['corpus'][
            'target'] == 'ipa' else 'char'

        # Optimizer
        self.optimizer = Optimizer(model_paras, **self.config['hparas'])
        self.verbose(self.optimizer.create_msg())

        # Enable AMP if needed
        self.enable_apex()

        if self.paras.transfer:
            self.transfer_weight()

        # Automatically load pre-trained model if self.paras.load is given
        if self.paras.load:
            self.load_ckpt()
        # ToDo: other training methods

    def exec(self):
        ''' Training End-to-end ASR system '''
        self.verbose('Total training steps {}.'.format(
            human_format(self.max_step)))
        ctc_loss = None
        n_epochs = 0
        self.timer.set()

        while self.step < self.max_step:
            # Renew dataloader to enable random sampling
            if self.curriculum > 0 and n_epochs == self.curriculum:
                self.verbose(
                    'Curriculum learning ends after {} epochs, starting random sampling.'
                    .format(n_epochs))
                self.tr_set, _, _, _, _, _ = \
                    load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                                 False, **self.config['data'])
            for data in self.tr_set:
                # Pre-step : update tf_rate/lr_rate and do zero_grad
                # zero grad here
                tf_rate = self.optimizer.pre_step(self.step)
                total_loss = 0

                # Fetch data
                feat, feat_len, txt, txt_len = self.fetch_data(data)
                self.timer.cnt('rd')

                # Forward model
                # Note: txt should NOT start w/ <sos>
                ctc_output, encode_len = self.model(feat, feat_len)

                # Compute all objectives
                if self.paras.cudnn_ctc:
                    ctc_loss = self.ctc_loss(
                        ctc_output.transpose(0, 1),
                        txt.to_sparse().values().to(device='cpu',
                                                    dtype=torch.int32),
                        [ctc_output.shape[1]] * len(ctc_output),
                        txt_len.cpu().tolist())
                else:
                    ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1), txt,
                                             encode_len, txt_len)

                total_loss = ctc_loss

                self.timer.cnt('fw')

                # Backprop
                grad_norm = self.backward(total_loss)

                self.step += 1
                # Logger

                if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0):
                    self.progress(
                        'Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'.
                        format(total_loss.cpu().item(), grad_norm,
                               self.timer.show()))
                    #self.write_log('wer', {'tr_ctc': cal_er(self.tokenizer, ctc_output, txt, ctc=True)})
                    ctc_output = [
                        x[:length].argmax(dim=-1)
                        for x, length in zip(ctc_output, encode_len)
                    ]
                    self.write_log(
                        'per', {
                            'tr_ctc':
                            cal_er(self.tokenizer,
                                   ctc_output,
                                   txt,
                                   mode='per',
                                   ctc=True)
                        })
                    self.write_log(
                        'wer', {
                            'tr_ctc':
                            cal_er(self.tokenizer,
                                   ctc_output,
                                   txt,
                                   mode='wer',
                                   ctc=True)
                        })
                    self.write_log('loss', {'tr_ctc': ctc_loss.cpu().item()})

                # Validation
                if (self.step == 1) or (self.step % self.valid_step == 0):
                    self.validate()

                # End of step
                # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354
                torch.cuda.empty_cache()
                self.timer.set()
                if self.step > self.max_step:
                    break
            n_epochs += 1
        #self.log.close()
    def validate(self):
        # Eval mode
        self.model.eval()
        dev_per = {'ctc': []}
        dev_wer = {'ctc': []}

        for i, data in enumerate(self.dv_set):
            self.progress('Valid step - {}/{}'.format(i + 1, len(self.dv_set)))
            # Fetch data
            feat, feat_len, txt, txt_len = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                ctc_output, encode_len = self.model(feat, feat_len)

            ctc_output = [
                x[:length].argmax(dim=-1)
                for x, length in zip(ctc_output, encode_len)
            ]
            dev_per['ctc'].append(
                cal_er(self.tokenizer, ctc_output, txt, mode='per', ctc=True))
            dev_wer['ctc'].append(
                cal_er(self.tokenizer, ctc_output, txt, mode='wer', ctc=True))

            # Show some example on tensorboard
            if i == len(self.dv_set) // 2:
                for i in range(min(len(txt), self.DEV_N_EXAMPLE)):
                    #if self.step == 1:
                    self.write_log('true_text{}'.format(i),
                                   self.tokenizer.decode(txt[i].tolist()))
                    self.write_log(
                        'ctc_text{}'.format(i),
                        self.tokenizer.decode(ctc_output[i].tolist(),
                                              ignore_repeat=True))

        # Ckpt if performance improves
        for task in ['ctc']:
            dev_wer[task] = sum(dev_wer[task]) / len(dev_wer[task])
            dev_per[task] = sum(dev_per[task]) / len(dev_per[task])
            if dev_per[task] < self.best_per[task]:
                self.best_per[task] = dev_per[task]
                self.save_checkpoint('best_{}.pth'.format('per'), 'per',
                                     dev_per[task])
                self.log.log_other('dv_best_per', self.best_per['ctc'])
            if self.eval_target == 'char' and dev_wer[task] < self.best_wer[
                    task]:
                self.best_wer[task] = dev_wer[task]
                self.save_checkpoint('best_{}.pth'.format('wer'), 'wer',
                                     dev_wer[task])
                self.log.log_other('dv_best_wer', self.best_wer['ctc'])

            self.write_log('per', {'dv_' + task: dev_per[task]})
            if self.eval_target == 'char':
                self.write_log('wer', {'dv_' + task: dev_wer[task]})
        self.save_checkpoint('latest.pth',
                             'per',
                             dev_per['ctc'],
                             show_msg=False)
        if self.paras.save_every:
            self.save_checkpoint(f'{self.step}.path',
                                 'per',
                                 dev_per['ctc'],
                                 show_msg=False)

        # Resume training
        self.model.train()
コード例 #6
0
ファイル: self_learning.py プロジェクト: yagyapandeya/NPC
class Solver(BaseSolver):
    ''' Solver for training'''
    def __init__(self, config, paras):
        super().__init__(config, paras)
        # Logger settings
        self.val_loss = 1000
        self.cur_epoch = 0

    def fetch_data(self, data):
        ''' Move data to device '''
        file_id, audio_feat, audio_len = data
        if self.gpu:
            audio_feat = audio_feat.cuda()
        return file_id, audio_feat, audio_len

    def load_data(self):
        ''' Load data for training/validation '''
        self.tr_set, self.dv_set, _, self.audio_dim, msg = \
            prepare_data(self.paras.njobs, self.paras.dev_njobs, self.paras.gpu,
                         self.paras.pin_memory, **self.config['data'])
        self.verbose(msg)

    def set_model(self):
        ''' Setup model and optimizer '''
        # Model
        self.method = self.config['model']['method']
        if self.method in ['apc','vqapc']:
            self.n_future = self.config['model']['n_future']
            from model.apc import APC as Net
        elif self.method == 'npc':
            from model.npc import NPC as Net
        else:
            raise NotImplementedError
        self.model = Net(input_size=self.audio_dim, **self.config['model']['paras'])
        if self.gpu:
            self.model = self.model.cuda()
        self.verbose(self.model.create_msg())
        model_paras = [{'params': self.model.parameters()}]

        # Loss
        if 'npc' in self.method:
            # Avoid reduction for NPC for zero-padding
            self.loss = torch.nn.L1Loss(reduction='none')
        else:
            # APC family have zero-padding with torch API
            self.loss = torch.nn.L1Loss()
        if self.gpu:
            self.loss = self.loss.cuda()

        # Optimizer
        self.optimizer = Optimizer(model_paras, **self.config['hparas'])
        self.verbose(self.optimizer.create_msg())

        # Automatically load pre-trained model if self.paras.load is given
        self.load_ckpt()

        # ToDo:  Data Parallel?
        # self.model = torch.nn.DataParallel(self.model)
        self.model.train()

    def exec(self):
        ''' Training End-to-end ASR system '''
        self.verbose('Total training epoch {}.'.format(
            human_format(self.epoch)))
        self.timer.set()
        aug_loss = None
        ep_len = len(self.tr_set)

        for ep in range(self.epoch):
            # Pre-step, decay
            if ep>0:
                self.optimizer.decay()

            for data in self.tr_set:
                # Pre-step : update tf_rate/lr_rate and do zero_grad
                self.optimizer.pre_step(self.step)
                
                # Fetch data
                _, audio_feat, audio_len = self.fetch_data(data)
                self.timer.cnt('rd')

                # Forward real data
                if 'npc' in self.method:
                    # NPC: input = target
                    pred, _ = self.model(audio_feat)
                    loss = self.loss(pred, audio_feat)
                    # Compute loss on valid part only
                    effective_loss = 0
                    for i,a_len in enumerate(audio_len):
                        effective_loss += loss[i,:a_len,:].mean(dim=-1).sum()
                    loss = effective_loss/sum(audio_len)
                else:
                    # APC: input = shifted target
                    audio_len = [l-self.n_future for l in audio_len]
                    pred, _ = self.model(audio_feat[:,:-self.n_future,:], audio_len, testing=False)
                    loss = self.loss(pred, audio_feat[:,self.n_future:,:])
                self.timer.cnt('fw')
                # Backprop
                grad_norm = self.backward(loss)
                self.step += 1

                # Logger
                if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0):
                    self.progress(' {:2.1f} % | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'
                                  .format(100*float(self.step%ep_len)/ep_len,
                                          loss.cpu().item(),
                                          grad_norm,
                                          self.timer.show()))
                    self.write_log('loss', {'tr': loss})
                    
                if (self.step == 1) or (self.step % self.PLOT_STEP == 0):
                    # Perplexity of P(token)
                    g1_ppx, g2_ppx = self.model.report_ppx()     
                    self.write_log('ppx', {'group 1':g1_ppx,
                                           'group 2':g2_ppx})
                    g1_usg, g2_usg = self.model.report_usg() # Empty cache
                    # Plots
                    if self.paras.draw:
                        g1_hist = draw(g1_usg, hist=True)
                        g2_hist = draw(g2_usg, hist=True)
                        self.write_log('VQ Group 1 Hist.',g1_hist)
                        self.write_log('VQ Group 2 Hist.',g2_hist)
                        # Some spectrograms
                        plt_idx = 0
                        self.write_log('Spectrogram (raw)', draw(audio_feat[plt_idx]))
                        self.write_log('Spectrogram (pred)', draw(pred[plt_idx]))

                # End of step
                self.timer.set()
            # End of epoch
            self.cur_epoch += 1
            self.validate()
        self.log.close()

    def validate(self):
        # Eval mode
        self.model.eval()
        dev_loss = []
        for i, data in enumerate(self.dv_set):
            self.progress('Valid step - {}/{}'.format(i+1, len(self.dv_set)))
            # Fetch data
            _, audio_feat, audio_len = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                if 'npc' in self.method:
                    pred, _ = self.model(audio_feat, testing=True)
                    loss = self.loss(pred, audio_feat)
                    # Compute loss on valid part only
                    effective_loss = 0
                    for i,a_len in enumerate(audio_len):
                        effective_loss += loss[i,:a_len,:].mean(dim=-1).sum()
                    loss = effective_loss/sum(audio_len)
                else:
                    audio_len = [l-self.n_future for l in audio_len]
                    pred, _ = self.model(audio_feat[:,:-self.n_future,:], audio_len, testing=True)
                    loss = self.loss(pred, audio_feat[:,self.n_future:,:])
                dev_loss.append(loss.cpu().item())

        # Record metric
        dev_loss = sum(dev_loss)/len(dev_loss)
        self.write_log('loss', {'dev':dev_loss})
        if dev_loss < self.val_loss:
            self.val_loss = dev_loss
            self.save_checkpoint('best_loss.pth', 'loss', dev_loss)
        # Resume training
        self.model.train()
コード例 #7
0
class Solver(BaseSolver):
    ''' Solver for training'''
    def __init__(self, config, paras, mode):
        super().__init__(config, paras, mode)

        # Curriculum learning affects data loader
        self.curriculum = self.config['hparas']['curriculum']
        self.val_mode = self.config['hparas']['val_mode'].lower()
        self.WER = 'per' if self.val_mode == 'per' else 'wer'

    def fetch_data(self, data, train=False):
        ''' Move data to device and compute text seq. length'''
        # feat: B x T x D
        _, feat, feat_len, txt = data

        if self.paras.upstream is not None:
            # feat is raw waveform
            device = 'cpu' if self.paras.deterministic else self.device
            self.upstream.to(device)
            self.specaug.to(device)

            def to_device(feat):
                return [f.to(device) for f in feat]

            def extract_feature(feat):
                feat = self.upstream(to_device(feat))
                if train and self.config['data']['audio'][
                        'augment'] and 'aug' not in self.paras.upstream:
                    feat = [self.specaug(f) for f in feat]
                return feat

            if HALF_BATCHSIZE_AUDIO_LEN < 3500 and train:
                first_len = extract_feature(feat[:1])[0].shape[0]
                if first_len > HALF_BATCHSIZE_AUDIO_LEN:
                    feat = feat[::2]
                    txt = txt[::2]

            if self.paras.upstream_trainable:
                self.upstream.train()
                feat = extract_feature(feat)
            else:
                with torch.no_grad():
                    self.upstream.eval()
                    feat = extract_feature(feat)

            feat_len = torch.LongTensor([len(f) for f in feat])
            feat = pad_sequence(feat, batch_first=True)
            txt = pad_sequence(txt, batch_first=True)

        feat = feat.to(self.device)
        feat_len = feat_len.to(self.device)
        txt = txt.to(self.device)
        txt_len = torch.sum(txt != 0, dim=-1)

        return feat, feat_len, txt, txt_len

    def load_data(self):
        ''' Load data for training/validation, store tokenizer and input/output shape'''
        if self.paras.upstream is not None:
            print(f'[Solver] - using S3PRL {self.paras.upstream}')
            self.tr_set, self.dv_set, self.vocab_size, self.tokenizer, msg = \
                            load_wav_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                                        self.curriculum>0,
                                        **self.config['data'])
            self.upstream = torch.hub.load(
                's3prl/s3prl',
                self.paras.upstream,
                feature_selection=self.paras.upstream_feature_selection,
                refresh=self.paras.upstream_refresh,
                ckpt=self.paras.upstream_ckpt,
                force_reload=True,
            )
            self.feat_dim = self.upstream.get_output_dim()
            self.specaug = Augment()
        else:
            self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg = \
                         load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                                      self.curriculum>0,
                                      **self.config['data'])
        self.verbose(msg)

        # Dev set sames
        self.dv_names = []
        if type(self.dv_set) is list:
            for ds in self.config['data']['corpus']['dev_split']:
                self.dv_names.append(ds[0])
        else:
            self.dv_names = self.config['data']['corpus']['dev_split'][0]

        # Logger settings
        if type(self.dv_names) is str:
            self.best_wer = {
                'att': {
                    self.dv_names: 3.0
                },
                'ctc': {
                    self.dv_names: 3.0
                }
            }
        else:
            self.best_wer = {'att': {}, 'ctc': {}}
            for name in self.dv_names:
                self.best_wer['att'][name] = 3.0
                self.best_wer['ctc'][name] = 3.0

    def set_model(self):
        ''' Setup ASR model and optimizer '''
        # Model
        #print(self.feat_dim) #160
        batch_size = self.config['data']['corpus']['batch_size'] // 2
        self.model = ASR(self.feat_dim, self.vocab_size, batch_size,
                         **self.config['model']).to(self.device)

        self.verbose(self.model.create_msg())
        model_paras = [{'params': self.model.parameters()}]

        # Losses
        '''label smoothing'''
        if self.config['hparas']['label_smoothing']:
            self.seq_loss = LabelSmoothingLoss(31, 0.1)
            print('[INFO]  using label smoothing. ')
        else:
            self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0)
        self.ctc_loss = torch.nn.CTCLoss(
            blank=0,
            zero_infinity=False)  # Note: zero_infinity=False is unstable?

        # Plug-ins
        self.emb_fuse = False
        self.emb_reg = ('emb'
                        in self.config) and (self.config['emb']['enable'])
        if self.emb_reg:
            from src.plugin import EmbeddingRegularizer
            self.emb_decoder = EmbeddingRegularizer(
                self.tokenizer, self.model.dec_dim,
                **self.config['emb']).to(self.device)
            model_paras.append({'params': self.emb_decoder.parameters()})
            self.emb_fuse = self.emb_decoder.apply_fuse
            if self.emb_fuse:
                self.seq_loss = torch.nn.NLLLoss(ignore_index=0)
            self.verbose(self.emb_decoder.create_msg())

        # Optimizer
        self.optimizer = Optimizer(model_paras, **self.config['hparas'])
        self.lr_scheduler = self.optimizer.lr_scheduler
        self.verbose(self.optimizer.create_msg())

        # Enable AMP if needed
        self.enable_apex()

        # Transfer Learning
        if self.transfer_learning:
            self.verbose('Apply transfer learning: ')
            self.verbose('      Train encoder layers: {}'.format(
                self.train_enc))
            self.verbose('      Train decoder:        {}'.format(
                self.train_dec))
            self.verbose('      Save name:            {}'.format(
                self.save_name))

        # Automatically load pre-trained model if self.paras.load is given
        self.load_ckpt()

    def exec(self):
        ''' Training End-to-end ASR system '''
        self.verbose('Total training steps {}.'.format(
            human_format(self.max_step)))
        if self.transfer_learning:
            self.model.encoder.fix_layers(self.fix_enc)
            if self.fix_dec and self.model.enable_att:
                self.model.decoder.fix_layers()
            if self.fix_dec and self.model.enable_ctc:
                self.model.fix_ctc_layer()

        self.n_epochs = 0
        self.timer.set()
        '''early stopping for ctc '''
        self.early_stoping = self.config['hparas']['early_stopping']
        stop_epoch = 10
        batch_size = self.config['data']['corpus']['batch_size']
        stop_step = len(self.tr_set) * stop_epoch // batch_size

        while self.step < self.max_step:
            ctc_loss, att_loss, emb_loss = None, None, None
            # Renew dataloader to enable random sampling

            if self.curriculum > 0 and n_epochs == self.curriculum:
                self.verbose(
                    'Curriculum learning ends after {} epochs, starting random sampling.'
                    .format(n_epochs))
                self.tr_set, _, _, _, _, _ = \
                         load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory,
                                      False, **self.config['data'])

            for data in self.tr_set:
                # Pre-step : update tf_rate/lr_rate and do zero_grad
                tf_rate = self.optimizer.pre_step(self.step)
                total_loss = 0

                # Fetch data
                feat, feat_len, txt, txt_len = self.fetch_data(data,
                                                               train=True)

                self.timer.cnt('rd')
                # Forward model
                # Note: txt should NOT start w/ <sos>
                ctc_output, encode_len, att_output, att_align, dec_state = \
                    self.model( feat, feat_len, max(txt_len), tf_rate=tf_rate,
                                    teacher=txt, get_dec_state=self.emb_reg)
                # Clear not used objects
                del att_align

                # Plugins
                if self.emb_reg:
                    emb_loss, fuse_output = self.emb_decoder(dec_state,
                                                             att_output,
                                                             label=txt)
                    total_loss += self.emb_decoder.weight * emb_loss
                else:
                    del dec_state
                ''' early stopping ctc'''
                if self.early_stoping:
                    if self.step > stop_step:
                        ctc_output = None
                        self.model.ctc_weight = 0
                #print(ctc_output.shape)
                # Compute all objectives
                if ctc_output is not None:
                    if self.paras.cudnn_ctc:
                        ctc_loss = self.ctc_loss(
                            ctc_output.transpose(0, 1),
                            txt.to_sparse().values().to(device='cpu',
                                                        dtype=torch.int32),
                            [ctc_output.shape[1]] * len(ctc_output),
                            #[int(encode_len.max()) for _ in encode_len],
                            txt_len.cpu().tolist())
                    else:
                        ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1),
                                                 txt, encode_len, txt_len)
                    total_loss += ctc_loss * self.model.ctc_weight
                    del encode_len

                if att_output is not None:
                    #print(att_output.shape)
                    b, t, _ = att_output.shape
                    att_output = fuse_output if self.emb_fuse else att_output
                    att_loss = self.seq_loss(att_output.view(b * t, -1),
                                             txt.view(-1))
                    # Sum each uttr and devide by length then mean over batch
                    # att_loss = torch.mean(torch.sum(att_loss.view(b,t),dim=-1)/torch.sum(txt!=0,dim=-1).float())
                    total_loss += att_loss * (1 - self.model.ctc_weight)

                self.timer.cnt('fw')

                # Backprop
                grad_norm = self.backward(total_loss)

                self.step += 1

                # Logger
                if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0):
                    self.progress('Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'\
                            .format(total_loss.cpu().item(),grad_norm,self.timer.show()))
                    self.write_log('emb_loss', {'tr': emb_loss})
                    if att_output is not None:
                        self.write_log('loss', {'tr_att': att_loss})
                        self.write_log(self.WER, {
                            'tr_att':
                            cal_er(self.tokenizer, att_output, txt)
                        })
                        self.write_log(
                            'cer', {
                                'tr_att':
                                cal_er(self.tokenizer,
                                       att_output,
                                       txt,
                                       mode='cer')
                            })
                    if ctc_output is not None:
                        self.write_log('loss', {'tr_ctc': ctc_loss})
                        self.write_log(
                            self.WER, {
                                'tr_ctc':
                                cal_er(
                                    self.tokenizer, ctc_output, txt, ctc=True)
                            })
                        self.write_log(
                            'cer', {
                                'tr_ctc':
                                cal_er(self.tokenizer,
                                       ctc_output,
                                       txt,
                                       mode='cer',
                                       ctc=True)
                            })
                        self.write_log(
                            'ctc_text_train',
                            self.tokenizer.decode(
                                ctc_output[0].argmax(dim=-1).tolist(),
                                ignore_repeat=True))
                    # if self.step==1 or self.step % (self.PROGRESS_STEP * 5) == 0:
                    #     self.write_log('spec_train',feat_to_fig(feat[0].transpose(0,1).cpu().detach(), spec=True))
                    #del total_loss

                    if self.emb_fuse:
                        if self.emb_decoder.fuse_learnable:
                            self.write_log(
                                'fuse_lambda',
                                {'emb': self.emb_decoder.get_weight()})
                        self.write_log('fuse_temp',
                                       {'temp': self.emb_decoder.get_temp()})

                # Validation
                if (self.step == 1) or (self.step % self.valid_step == 0):
                    if type(self.dv_set) is list:
                        for dv_id in range(len(self.dv_set)):
                            self.validate(self.dv_set[dv_id],
                                          self.dv_names[dv_id])
                    else:
                        self.validate(self.dv_set, self.dv_names)
                if self.step % (len(self.tr_set) //
                                batch_size) == 0:  # one epoch
                    print('Have finished epoch: ', self.n_epochs)
                    self.n_epochs += 1

                if self.lr_scheduler == None:
                    lr = self.optimizer.opt.param_groups[0]['lr']

                    if self.step == 1:
                        print(
                            '[INFO]    using lr schedular defined by Daniel, init lr = ',
                            lr)

                    if self.step > 99999 and self.step % 2000 == 0:
                        lr = lr * 0.85
                        for param_group in self.optimizer.opt.param_groups:
                            param_group['lr'] = lr
                        print('[INFO]     at step:', self.step)
                        print('[INFO]   lr reduce to', lr)

                    #self.lr_scheduler.step(total_loss)
                # End of step
                # if self.step % EMPTY_CACHE_STEP == 0:
                # Empty cuda cache after every fixed amount of steps
                torch.cuda.empty_cache(
                )  # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354
                self.timer.set()
                if self.step > self.max_step: break

            #update lr_scheduler

        self.log.close()
        print('[INFO] Finished training after', human_format(self.max_step),
              'steps.')

    def validate(self, _dv_set, _name):
        # Eval mode
        self.model.eval()
        if self.emb_decoder is not None: self.emb_decoder.eval()
        dev_wer = {'att': [], 'ctc': []}
        dev_cer = {'att': [], 'ctc': []}
        dev_er = {'att': [], 'ctc': []}

        for i, data in enumerate(_dv_set):
            self.progress('Valid step - {}/{}'.format(i + 1, len(_dv_set)))
            # Fetch data
            feat, feat_len, txt, txt_len = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                ctc_output, encode_len, att_output, att_align, dec_state = \
                    self.model( feat, feat_len, int(max(txt_len)*self.DEV_STEP_RATIO),
                                    emb_decoder=self.emb_decoder)

            if att_output is not None:
                dev_wer['att'].append(
                    cal_er(self.tokenizer, att_output, txt, mode='wer'))
                dev_cer['att'].append(
                    cal_er(self.tokenizer, att_output, txt, mode='cer'))
                dev_er['att'].append(
                    cal_er(self.tokenizer, att_output, txt,
                           mode=self.val_mode))
            if ctc_output is not None:
                dev_wer['ctc'].append(
                    cal_er(self.tokenizer,
                           ctc_output,
                           txt,
                           mode='wer',
                           ctc=True))
                dev_cer['ctc'].append(
                    cal_er(self.tokenizer,
                           ctc_output,
                           txt,
                           mode='cer',
                           ctc=True))
                dev_er['ctc'].append(
                    cal_er(self.tokenizer,
                           ctc_output,
                           txt,
                           mode=self.val_mode,
                           ctc=True))

            # Show some example on tensorboard
            if i == len(_dv_set) // 2:
                for i in range(min(len(txt), self.DEV_N_EXAMPLE)):
                    if self.step == 1:
                        self.write_log('true_text_{}_{}'.format(_name, i),
                                       self.tokenizer.decode(txt[i].tolist()))
                    if att_output is not None:
                        self.write_log(
                            'att_align_{}_{}'.format(_name, i),
                            feat_to_fig(att_align[i, 0, :, :].cpu().detach()))
                        self.write_log(
                            'att_text_{}_{}'.format(_name, i),
                            self.tokenizer.decode(
                                att_output[i].argmax(dim=-1).tolist()))
                    if ctc_output is not None:
                        self.write_log(
                            'ctc_text_{}_{}'.format(_name, i),
                            self.tokenizer.decode(
                                ctc_output[i].argmax(dim=-1).tolist(),
                                ignore_repeat=True))

        # Ckpt if performance improves
        tasks = []
        if len(dev_er['att']) > 0:
            tasks.append('att')
        if len(dev_er['ctc']) > 0:
            tasks.append('ctc')

        for task in tasks:
            dev_er[task] = sum(dev_er[task]) / len(dev_er[task])
            dev_wer[task] = sum(dev_wer[task]) / len(dev_wer[task])
            dev_cer[task] = sum(dev_cer[task]) / len(dev_cer[task])
            if dev_er[task] < self.best_wer[task][_name]:
                self.best_wer[task][_name] = dev_er[task]
                self.save_checkpoint(
                    'best_{}_{}.pth'.format(
                        task, _name +
                        (self.save_name if self.transfer_learning else '')),
                    self.val_mode, dev_er[task], _name)
            if self.step >= self.max_step:
                self.save_checkpoint(
                    'last_{}_{}.pth'.format(
                        task, _name +
                        (self.save_name if self.transfer_learning else '')),
                    self.val_mode, dev_er[task], _name)
            self.write_log(self.WER,
                           {'dv_' + task + '_' + _name.lower(): dev_wer[task]})
            self.write_log('cer',
                           {'dv_' + task + '_' + _name.lower(): dev_cer[task]})
            # if self.transfer_learning:
            #     print('[{}] WER {:.4f} / CER {:.4f} on {}'.format(human_format(self.step), dev_wer[task], dev_cer[task], _name))

        # Resume training
        self.model.train()
        if self.transfer_learning:
            self.model.encoder.fix_layers(self.fix_enc)
            if self.fix_dec and self.model.enable_att:
                self.model.decoder.fix_layers()
            if self.fix_dec and self.model.enable_ctc:
                self.model.fix_ctc_layer()

        if self.emb_decoder is not None: self.emb_decoder.train()
コード例 #8
0
class Solver(BaseSolver):
    ''' Solver for training'''
    def __init__(self, config, paras):
        super().__init__(config, paras)
        # Logger settings
        self.best_dev_er = 1.0
        self.cur_epoch = 0
        # Configs following self-supervised learning
        self.task = self.paras.task
        assert self.task in ['phn-clf', 'spk-clf'], 'unsupported task'
        self.ssl_config = yaml.load(open(
            self.config['model']['feat']['config'], 'r'),
                                    Loader=yaml.FullLoader)
        self.feature = self.ssl_config['model']['method']
        if self.feature == 'npc' and 'spec' in self.config['model']['feat']:
            # NPC has additional option to use unmasked feature
            self.feat_spec = self.config['model']['feat']['spec']
        else:
            self.feat_spec = None
        self.config['data']['audio'] = self.ssl_config['data']['audio']

    def fetch_data(self, data, train=True):
        ''' Move data to device '''
        file_id, audio_feat, audio_len, label = data
        if self.gpu:
            audio_feat = audio_feat.cuda()
            label = label.cuda()
        # Extract feature
        with torch.no_grad():
            if self.feat_spec is not None:
                # Get unmasked feature from particular NPC layer
                n_layer_feat = int(self.feat_spec.split('-')[-1])
                audio_feat = self.feat_extractor.get_unmasked_feat(
                    audio_feat, n_layer_feat)
            elif self.feature == 'npc':
                # Get masked feature from NPC
                _, audio_feat = self.feat_extractor(audio_feat, testing=True)
            else:
                # Get feature from APC based model
                _, audio_feat = self.feat_extractor(audio_feat,
                                                    audio_len,
                                                    testing=True)
            # Mean pool feature for spkr classification
            if self.task == 'spk-clf':
                single_feat = []
                for a_feat, a_len in zip(audio_feat, audio_len):
                    single_feat.append(a_feat[:a_len].mean(dim=0))
                audio_feat = torch.stack(single_feat, dim=0)
        return file_id, audio_feat, audio_len, label

    def load_data(self):
        ''' Load data for training/validation '''
        self.tr_set, self.dv_set, self.tt_set, self.audio_dim, msg = \
            prepare_data(self.paras.njobs,self.paras.dev_njobs,self.paras.gpu,
                         self.paras.pin_memory, **self.config['data'])
        self.verbose(msg)

    def set_model(self):
        ''' Setup model and optimizer '''
        # Load SSL models for feature extraction
        self.verbose([' Load feat. extractor ckpt from '\
                        +self.config['model']['feat']['ckpt']])
        if self.feature in ['apc', 'vqapc']:
            from model.apc import APC as Net
        elif self.feature == 'npc':
            from model.npc import NPC as Net
            if self.feat_spec is not None:
                self.verbose([' Using specific feature: ' + self.feat_spec])
        else:
            raise NotImplementedError
        self.feat_extractor = Net(input_size=self.audio_dim,
                                  **self.ssl_config['model']['paras'])
        ckpt = torch.load(
            self.config['model']['feat']['ckpt'],
            map_location=self.device if self.mode == 'train' else 'cpu')
        ckpt['model'] = {k.replace('module.','',1):v \
                            for k,v in ckpt['model'].items()}
        self.feat_extractor.load_state_dict(ckpt['model'])

        # Classifier model
        self.model = CLF(feat_dim=self.feat_extractor.code_dim,
                         **self.config['model']['clf'])
        if self.gpu:
            self.feat_extractor = self.feat_extractor.cuda()
            self.feat_extractor.eval()
            self.model = self.model.cuda()
        model_paras = [{'params': self.model.parameters()}]

        # Losses
        ignore_idx = 0 if self.task == 'phn-clf' else -1
        self.loss = torch.nn.CrossEntropyLoss(ignore_index=ignore_idx)
        if self.gpu:
            self.loss = self.loss.cuda()

        # Optimizer
        self.optimizer = Optimizer(model_paras, **self.config['hparas'])
        self.verbose(self.optimizer.create_msg())

        self.load_ckpt()
        self.model.train()

    def exec(self):
        ''' Training End-to-end ASR system '''
        if self.paras.mode == 'train':
            self.verbose('Total training epoch {}.'.format(
                human_format(self.epoch)))
            self.timer.set()
            ep_len = len(self.tr_set)
            for ep in range(self.epoch):
                if ep > 0:
                    # Lr decay if needed
                    self.optimizer.decay()
                for data in self.tr_set:
                    # Pre-step :  do zero_grad
                    self.optimizer.pre_step(self.step)

                    # Fetch data
                    self.timer.cnt('rd')
                    _, audio_feat, audio_len, label = self.fetch_data(data)

                    # Forward
                    pred = self.model(audio_feat)
                    if self.task == 'phn-clf':
                        pred = pred.permute(0, 2, 1)  # BxCxT for phn clf
                    loss = self.loss(pred, label)
                    self.timer.cnt('fw')

                    # Backprop
                    grad_norm = self.backward(loss)
                    self.step += 1

                    # Logger
                    if (self.step == 1) or (self.step % self.PROGRESS_STEP
                                            == 0):
                        self.progress(
                            ' {:2.1f} % | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'
                            .format(100 * float(self.step % ep_len) / ep_len,
                                    loss.cpu().item(), grad_norm,
                                    self.timer.show()))
                        self.write_log(self.task + '_loss', {'tr': loss})
                        if self.task == 'phn-clf':
                            tr_er = cal_per(pred, label, audio_len)[0]
                        else:
                            tr_er = (pred.argmax(dim=-1) != label)
                            tr_er = tr_er.sum().detach().cpu().float() / len(
                                label)
                        self.write_log(self.task + '_er', {'tr': tr_er})
                    # End of step
                    self.timer.set()
                # End of epoch
                self.cur_epoch += 1
                self.validate()

        # Test at the end
        self.validate(test=True)
        self.log.close()

    def validate(self, test=False):
        # Eval mode
        self.model.eval()
        val_loss = []
        split = 'dev'
        val_hit, val_total = 0.0, 0.0
        ds = self.tt_set if test else self.dv_set

        # In training mode, best model is stored in RAM for test
        # ToDo: load ckpt
        if test:
            split = 'test'
            if self.paras.mode == 'train':
                self.model = self.best_model
                if self.gpu:
                    self.model = self.model.cuda()

        for i, data in enumerate(ds):
            self.progress('Valid step - {}/{}'.format(i + 1, len(ds)))
            # Fetch data
            _, audio_feat, audio_len, label = self.fetch_data(data)

            # Forward model
            with torch.no_grad():
                # Prediction
                pred = self.model(audio_feat)
                if self.task == 'phn-clf':
                    pred = pred.permute(0, 2, 1)  # BxCxT
                # Accumulate batch result
                val_loss.append(self.loss(pred, label))
                if self.task == 'phn-clf':
                    _, hit, total = cal_per(pred, label, audio_len)
                    val_hit += hit
                    val_total += total
                else:
                    hit = (pred.argmax(dim=-1) == label).sum()
                    val_hit += hit.detach().cpu().float()
                    val_total += len(label)
                # Write testing prediction if needed
                if test and self.paras.write_test:
                    if self.task == 'phn-clf':
                        pred = pred.argmax(dim=1).detach().cpu()
                    label = label.cpu()
                    with open(os.path.join(self.ckpdir, self.task + '.csv'),
                              'a') as f:
                        for p, l, a_len in zip(pred, label, audio_len):
                            for x, y in zip(p[:a_len].tolist(),
                                            l[:a_len].tolist()):
                                f.write('{}\t{}\n'.format(x, y))

        # Record metric, store ckpt by dev error rate
        val_loss = sum(val_loss) / len(val_loss)
        val_er = 1.0 - val_hit / val_total
        self.write_log(self.task + '_loss', {split: val_loss})
        self.write_log(self.task + '_er', {split: val_er})
        if split == 'dev' and self.best_dev_er > val_er:
            self.best_dev_er = val_er
            self.save_checkpoint('best.pth', self.task + '_er', val_er)
            self.best_model = copy.deepcopy(self.model.cpu())  # Clone for test

        # Resume training
        if self.gpu:
            self.model = self.model.cuda()
        self.model.train()