nbNeurons1, meanRates1, meanRatesStd1, s = simulate_selection_vs_neurons( sel_interval_1, hz=20, load=True) s = s + ' %s %5s %3s \n' % ('Sel thr:', str(SELECTION_THR), 'Hz') s = s + ' \n%s %5s %3s \n' % ('Sel interval 1:', str(sel_interval_1), 'pA') info_string = info_string + s misc.pickle_save([nbNeurons1, meanRates1, meanRatesStd1, info_string], save_result_at) else: print 'hej' #nbNeurons1, meanRates1, meanRatesStd1, info_string = misc.pickle_load(save_result_at) # DISPLAY plot_settings.set_mode(pylab, mode='by_fontsize', w=1100.0, h=450.0, fontsize=12) font_size_text = 8 fig = pylab.figure(facecolor='w') ax_list = [] ax_list.append(MyAxes(fig, [.075, .37, .135, .26])) # text box ax_list.append(MyAxes(fig, [.26, .6, .165, .34])) # ax_list.append(MyAxes(fig, [.53, .6, .165, .34])) # ax_list.append(MyAxes(fig, [.26, .1, .165 * 2.312, .34])) # ax_list.append(MyAxes(fig, [.8, .6, .165, .34])) # #ax_list.append( MyAxes(fig, [ .53, .1, .165, .34 ] ) ) # ax_list.append(MyAxes(fig, [.8, .1, .165, .34])) # # Text
frequenciesAll, steadyStateFacilitationAll = simulate_steady_state_freq(numpy.arange(1.,100.,1.)) # Max conductance all frequencies if LOAD: sname_nb=0 frequenciesAll, maxFacilitationAll = simulate_steady_state_freq(numpy.arange(1.,100.,1.), flag='max') # Recovery spike revoceryTimes, relativeRecovery = simulate_recovery(numpy.arange(100,5000,200)) # Steady state conductance 0-1 frequencies frequenciesZoom, relativeFacilitationZoom = simulate_steady_state_freq(numpy.arange(0.1,1.,.1)) # DISPLAY plot_settings.set_mode(mode='by_fontsize', w = 750.0, h = 400.0, fontsize=12) font_size_text = 9 fig = pylab.figure( facecolor = 'w' ) ax_list = [] ax_list.append( MyAxes(fig, [ .1, .4, .18, .26 ] ) ) # text box ax_list.append( MyAxes(fig, [ .35, .6, .24, .34 ] ) ) # ax_list.append( MyAxes(fig, [ .73, .6, .24, .34 ] ) ) # ax_list.append( MyAxes(fig, [ .35, .1, .24, .34 ] ) ) # ax_list.append( MyAxes(fig, [ .73, .1, .24, .34 ] ) ) # # Text ax=ax_list[0] plot_text(ax) # Example steady state all
return xopt sim_time=20000 save_at=OUTPUT_PATH+'/simulate_network_fmin.plk' x=fmin(0,save_at) #x=[215, 0.08] STN_target1, e1=restriction_1(gpe_rate, n_ctx, n_gpe, x, neuron_model, syn_models) STN_target2, e2=restriction_2(gpe_rate, n_ctx, n_gpe, x, neuron_model, syn_models) STN_target3 = GPE_46_hz(gpe_rate, n_ctx, n_gpe, x, neuron_model, syn_models) plot_settings.set_mode(pylab, mode='by_fontsize', w = 500.0, h = 500.0, fontsize=8) font_size_text = 8 fig = pylab.figure( facecolor = 'w') ax_list=[] ax_list.append( MyAxes(fig, [ .1, .7, .8, .2 ] ) ) # text box ax_list.append( MyAxes(fig, [ .1, .4, .8, .2 ] ) ) # ax_list.append( MyAxes(fig, [ .1, .1, .8, .2 ] ) ) # ax=ax_list[0] plot_example(ax, STN_target1,sim_time, x, type='No GPE') ax=ax_list[1] plot_example(ax, STN_target2, sim_time, x, type='Normal') ax=ax_list[2]
# input sgs = my_nest.Create('spike_generator', params={'spike_times': [float(sp) for sp in spike_times]}) syn_model = 'MSN_MSN_gaba_s' my_nest.Connect(sgs, [MSN[0]], model=syn_model) # connect MSNs T = 2000 # simulation time my_nest.Simulate(T) # simulate MSN.get_signal('v', 'V_m') pylab.close('all') # display # Create figure where figsize(width,height) and figure dimenstions window # width = figsize(width) x dpi and window hight = figsize(hight) x dpi plot_settings.set_mode(mode='dynamic', w=700.0, h=400.0) font_size_text = 10 fig = pylab.figure(facecolor='w') pylab.suptitle('MSN to MSN') ax_list = [] ax_list.append(MyAxes(fig, [.1, .37, .2, .26])) # text box ax_list.append(MyAxes(fig, [.50, .15, .40, .65])) # voltage trace ds = my_nest.GetDefaults(syn_model) sn = my_nest.GetStatus(MSN[:])[0] ax = ax_list[0] # Text box tb = '' tb = tb + ' %6s %7s %3s \n' % ('Synapse model:', ds['synapsemodel'], ' ') tb = tb + ' \n '
n_gpe = 32 stn_rate = 10.0 n_exp = 4. SNR_target1, mr1, std1, e1 = restriction_1(msn_rate, gpe_rate, stn_rate, n_msn, n_gpe, x, neuron_model, syn_models, n_exp) SNR_target2, mr2, std2, e2 = restriction_2(msn_rate, gpe_rate, stn_rate, n_msn, n_gpe, x, neuron_model, syn_models, n_exp) SNR_target3, mr3, std3, e3 = restriction_3(msn_rate, gpe_rate, stn_rate, n_msn, n_gpe, x, neuron_model, syn_models, n_exp) plot_settings.set_mode(pylab, mode='by_fontsize', w=1000.0, h=1000.0, fontsize=16) font_size_text = 8 fig = pylab.figure(facecolor='w') ax_list = [] ax_list.append(MyAxes(fig, [.1, .7, .8, .2])) # text box ax_list.append(MyAxes(fig, [.1, .4, .8, .2])) # ax_list.append(MyAxes(fig, [.1, .1, .8, .2])) # ax = ax_list[0] plot_example(ax, SNR_target1, sim_time, x, [mr1, std1], type='No GABA') ax = ax_list[1] plot_example(ax, SNR_target2, sim_time, x, [mr2, std2], type='No STN')