コード例 #1
0
    def _draw(self):
        self._canvas("clear_screen")

        group_population_number = int(force_model.get_population_size())
        for i in range(group_population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) == False and math.isnan(y) == False:
                r = force_model.group_pedestrian_a_property(i, "radius")
                #every pedestrian is equal, no more group id, thus we put 0
                self._canvas("draw_pedestrian", x, y, r, 0)
            else:
                print("Position is unidentified")
                sys.exit()

        for s in self.parameters['start_areas']:
            self._canvas("draw_start_area", s)

        turning_draw = (20.0, 9.0, 50.0, 41.0)
        self._canvas("draw_start_area", turning_draw)

        for w in self.parameters['walls']:
            self._canvas("draw_wall", w)

        monitor = (-1000, self.monitor_point, 1000.0, self.monitor_point)
        self._canvas("draw_wall", monitor)

        #self._canvas("draw_target", self.parameters['targets'][0][0], self.parameters['targets'][0][1])

        self._canvas("draw_text", "t = %.2f" % self.time)

        self.show_canvas.update()
コード例 #2
0
    def _draw(self):
        self._canvas("clear_screen")

        group_population_number = int(force_model.get_population_size())
        for i in range(group_population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) == False and math.isnan(y) == False:
                r = force_model.group_pedestrian_a_property(i, "radius")
                ped_id = int(
                    force_model.group_pedestrian_a_property(i, "ped_id"))

                is_tracked = self._canvas("is_tracked_pedestrian", x, y)

                if (is_tracked and constants.tracked_pedestrian_id == -1):
                    self._canvas("reset_tracked_position")
                    constants.tracked_pedestrian_id = int(
                        force_model.group_pedestrian_a_property(i, "ped_id"))

                    self.pedestrian_track._reset(
                        self.time, constants.tracked_pedestrian_id)
                    self.pedestrian_track._force_color('r.-', 'k.-')
                    self.draw_tracked_ped()

                else:
                    if constants.tracked_pedestrian_id == ped_id:  #break in order to not depend on i
                        self.draw_tracked_ped()

                    else:
                        self._canvas("draw_pedestrian", x, y, r, 0)
            else:
                print("Position is unidentified")
                sys.exit()

        for s in self.parameters['start_areas']:
            self._canvas("draw_start_area", s)

        #monitor = (self.monitor_point,-40,self.monitor_point,40.0)
        #self._canvas("draw_wall", monitor)

        for w in self.parameters['walls']:
            self._canvas("draw_wall", w)

        split_draw = (20.0 - self.shift, -25.0, 60.0 - self.shift, 25.0
                      )  #(60.0, -19.0, 80.0, 19.0)
        merge_draw = (100.0 - self.shift, -25.0, 140.0 - self.shift, 25.0
                      )  #(130.0, -19.0,150.0, 19.0)

        obstacle = (60.0 - self.shift, -2, 100.0 - self.shift, 2.0)

        #self._canvas("draw_start_area", split_draw)
        #self._canvas("draw_start_area", merge_draw)

        self._canvas("draw_obstacle", obstacle)

        monitor = (self.monitor_point, -40, self.monitor_point, 40.0)
        self._canvas("draw_wall", monitor)

        #self._canvas("draw_text", "t = %.2f" % self.time)

        self.show_canvas.update()
コード例 #3
0
    def _draw(self):
        self._canvas("clear_screen")

        group_population_number = int(force_model.get_population_size())
        for i in range(group_population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) == False and math.isnan(y) == False:
                r = force_model.group_pedestrian_a_property(i, "radius")
                group_id = force_model.group_pedestrian_a_property(
                    i, "groupid")
                self._canvas("draw_pedestrian", x, y, r, group_id)
            else:
                print("Position is unidentified")
                sys.exit()

        for s in self.parameters['start_areas']:
            self._canvas("draw_start_area", s)

        turning_draw = (-11.0, -54.0, 21.0, -24.0)
        self._canvas("draw_start_area", turning_draw)

        for w in self.parameters['walls']:
            self._canvas("draw_wall", w)

        monitor = (self.monitor_point, -400, self.monitor_point, 400.0)
        self._canvas("draw_wall", monitor)

        self._canvas("draw_text", "t = %.2f" % self.time)

        self.show_canvas.update()
コード例 #4
0
    def _dump_frame(self, context_index, current_frame):
        population_number = int(force_model.get_population_size())

        pedestrians_frame = []

        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            r = force_model.group_pedestrian_a_property(i, "radius")
            group_id = force_model.group_pedestrian_a_property(i, "groupid")
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            (target_x,
             target_y) = force_model.group_pedestrian_a_property(i, "target")

            pedestrians_frame.append(
                dict(
                    pedestrian_id=ped_id,  #
                    group_id=group_id,  #
                    radius=r,  #
                    position=(x, y),  #
                    in_group_a_strength=self.
                    parameters['in_group_a_strength'],  #
                    in_group_a_range=self.parameters['in_group_a_range'],  #
                    in_group_r_strength=self.
                    parameters['in_group_r_strength'],  #
                    in_group_r_range=self.parameters['in_group_r_range'],
                    out_group_a_strength=self.
                    parameters['out_group_a_strength'],  #
                    out_group_a_range=self.parameters['out_group_a_range'],
                    out_group_r_strength=self.
                    parameters['out_group_r_strength'],
                    out_group_r_range=self.parameters['out_group_r_range'],

                    #target point
                    target=(target_x, target_y),  #
                    target_a_strength=self.parameters['target_a_strength'],
                    target_a_range=self.parameters['target_a_range']))  #

        frame_generator = frame_context(current_frame, pedestrians_frame)
        disp_level = self.parameters['out_group_r_strength'] / self.parameters[
            'in_group_r_strength']
        frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) +
                                 "_" + str(current_frame))

        log_file = open(
            "%s.json" %
            os.path.join(constants.framecontext_dir, frame_filename), "w")
        json_obj = json.dumps(frame_generator, cls=FrameContextLog_Encoder)
        log_file.write(json_obj)
        log_file.close()
コード例 #5
0
    def _draw(self):
        self._canvas("clear_screen")

        group_population_number = int(force_model.get_population_size())
        for i in range(group_population_number):
            (x,y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) ==False and math.isnan(y)==False:
                r = force_model.group_pedestrian_a_property(i, "radius")
                ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
                     
                is_tracked = self._canvas("is_tracked_pedestrian", x,y)
                
                if (is_tracked and constants.tracked_pedestrian_id== -1) :
                    self._canvas("reset_tracked_position")
                    constants.tracked_pedestrian_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
           
                    self.pedestrian_track._reset(self.time, constants.tracked_pedestrian_id)
                    self.pedestrian_track._force_color('r.-','k.-')
                    self.draw_tracked_ped()
                    
                else:
                    if  constants.tracked_pedestrian_id == ped_id : #break in order to not depend on i
                        self.draw_tracked_ped()
                
                    else:       
                        self._canvas("draw_pedestrian", x,y,r,0)
            else:
                print("Position is unidentified")
                sys.exit()

        for s in self.parameters['start_areas']:
            self._canvas("draw_start_area", s)

        #turning_draw = (20.0,9.0,50.0, 41.0)
        #self._canvas("draw_start_area", turning_draw)
                
        for w in self.parameters['walls']:
            self._canvas("draw_wall", w)

        monitor = (-1000,self.monitor_point,1000.0,self.monitor_point)
        self._canvas("draw_wall", monitor)
               
        #self._canvas("draw_target", self.parameters['targets'][0][0], self.parameters['targets'][0][1])
               
        #self._canvas("draw_text", "t = %.2f" % self.time)
               
        self.show_canvas.update()
コード例 #6
0
    def _revise_target(self):

        population_number = int(force_model.get_population_size())
        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            if x >= self.x_vertical_line:
                data = dict(ped_index=int(i), target=self.target_final)
                force_model.target_changed(data)
コード例 #7
0
    def _plot_track_ped(self):

        if constants.tracked_pedestrian_id != -1:

            target_force = force_model.group_pedestrian_id_property(
                constants.tracked_pedestrian_id, "target_force")
            if target_force != -999.0:

                wall_force = force_model.group_pedestrian_id_property(
                    constants.tracked_pedestrian_id, "wall_force")
                ingroup_force = force_model.group_pedestrian_id_property(
                    constants.tracked_pedestrian_id, "ingroup_force")
                outgroup_force = force_model.group_pedestrian_id_property(
                    constants.tracked_pedestrian_id, "outgroup_force")
                velocity_x = force_model.group_pedestrian_id_property(
                    constants.tracked_pedestrian_id, "velocity_x")
                speed = force_model.group_pedestrian_id_property(
                    constants.tracked_pedestrian_id, "velocity")

                (x, y) = force_model.group_pedestrian_id_property(
                    constants.tracked_pedestrian_id, "position")
                current_position = int(round(x + self.shift))  # +30

                #plot for force and velocity based on time
                #self.pedestrian_track._addsample(self.time , target_force, ingroup_force, outgroup_force, wall_force,velocity_x,current_position)
                self.pedestrian_track._addsample(self.time, target_force,
                                                 ingroup_force, outgroup_force,
                                                 wall_force, speed,
                                                 current_position)

        data = []
        group_population_number = int(force_model.get_population_size())

        for i in range(group_population_number):
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            target_force = force_model.group_pedestrian_a_property(
                i, "target_force")
            ingroup_force = force_model.group_pedestrian_a_property(
                i, "ingroup_force")
            outgroup_force = force_model.group_pedestrian_a_property(
                i, "outgroup_force")
            wall_force = force_model.group_pedestrian_a_property(
                i, "wall_force")

            velocity_x = force_model.group_pedestrian_a_property(
                i, "velocity_x")
            speed = force_model.group_pedestrian_id_property(i, "velocity")

            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            current_position = int(round(x + self.shift))  #+30

            #data.append([ped_id,target_force,ingroup_force,outgroup_force,wall_force,velocity_x,current_position])
            data.append([
                ped_id, target_force, ingroup_force, outgroup_force,
                wall_force, speed, current_position
            ])

        self.pedestrian_track._addsample2(self.time, data)
コード例 #8
0
    def _draw(self):
        self._canvas("clear_screen")

        group_population_number = int(force_model.get_population_size())
        for i in range(group_population_number):
            (x,y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) ==False and math.isnan(y)==False:
                r = force_model.group_pedestrian_a_property(i, "radius")
                group_id = force_model.group_pedestrian_a_property(i, "groupid")
                self._canvas("draw_pedestrian", x,y,r,group_id)
            else:
                print("Position is unidentified")
                sys.exit()

        for s in self.parameters['start_areas']:
            self._canvas("draw_start_area", s)
        
        for w in self.parameters['walls']:
            self._canvas("draw_wall", w)

        #self._canvas("draw_target", self.target_upper[0], self.target_upper[1])
        #self._canvas("draw_target", self.target_below[0], self.target_below[1])

  
        split_draw =  (20.0, -25.0, 60.0, 25.0)#(60.0, -19.0, 80.0, 19.0)
        merge_draw =  (100.0, -25.0, 140.0, 25.0)#(130.0, -19.0,150.0, 19.0)
                                                                                                        
        obstacle = (60.0,-2,100.0, 2.0)
        
        self._canvas("draw_start_area", split_draw)
        self._canvas("draw_start_area", merge_draw)        
                        
        self._canvas("draw_obstacle", obstacle)                
                        
        monitor = (self.monitor_point,-40,self.monitor_point,40.0)
        self._canvas("draw_wall", monitor)
                    
        self._canvas("draw_text", "t = %.2f" % self.time)
               
        self.show_canvas.update()
コード例 #9
0
    def _revise_target(self):

        population_number = int(force_model.get_population_size())
        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            test_in_area = self.turning_area.contains_point((x, y))
            if test_in_area or y < self.turning_up:
                data = dict(ped_index=int(i), target=self.target_final)
                force_model.target_changed(data)

            else:
                if y > self.turning_up:
                    data = dict(ped_index=int(i), target=self.target_original)
                    force_model.target_changed(data)
コード例 #10
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        ids_each_group = []

        for i in range(population_number):
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            ids_each_group.append(ped_id)

        #we get from json file rather than add manually by code
        disp_level = self.parameters['out_group_r_strength'] / self.parameters[
            'in_group_r_strength']
        frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) +
                                 "_" + str(int(self.frames)))

        adaptivecontext_file = open(
            "%s.json" %
            os.path.join(self.adaptive_context_dir, frame_filename))
        json_str = adaptivecontext_file.read()
        currentframecontext = json.loads(json_str, cls=FrameContextLog_Decoder)
        pedestrian_list = currentframecontext.get_pedestrian_list()
        additional_id_existed_ped = currentframecontext.get_additional_id_existed_ped(
        )
        adaptivecontext_file.close()
        '''we also need to dump additional for existed ped here'''
        #we also need to update friend list for existed pedestrians
        for ped_id in ids_each_group:
            #we need to fetch that friend list for this pedestrian and update in model
            current_list = additional_id_existed_ped[str(ped_id)]
            if len(current_list) > 0:
                current_list = [int(item) for item in current_list]
                data = dict(ped_id=int(ped_id),
                            additional_count=len(current_list),
                            friend_zone=tuple(current_list))
                force_model.add_additional_group_member(data)
        '''update position and target shift for pedestrian list '''
        if pedestrian_list is not None and len(pedestrian_list) > 0:
            for pedestrian in pedestrian_list:
                position = (pedestrian['position'][0],
                            pedestrian['position'][1] + self.shift)  #
                del pedestrian['position']
                pedestrian['position'] = position

                target = (pedestrian['target'][0],
                          pedestrian['target'][1] + self.shift)  #
                del pedestrian['target']
                pedestrian['target'] = target

                force_model.add_group_pedestrian(pedestrian)
コード例 #11
0
    def _done(self):
        
        if self.time > self.simulation_duration:
            pedestrian_escaped = 0
            # count pedestrians over the monitor point and printout the flow rate
            population_number = int(force_model.get_population_size())  
            for i in range(population_number):
                (x, y) = force_model.group_pedestrian_a_property(i, "position")
                if x >= self.monitor_point:
                    pedestrian_escaped += 1.0        
            
            print("flowrate " + str(pedestrian_escaped / self.simulation_duration))   

            return True
        
        return False
コード例 #12
0
    def _plot_sample(self):

        population_number = int(force_model.get_population_size())

        velocity_trajectories = [[] for i in range(population_number)]

        #here we also measure the influential matrix of pedestrian in narrowing corridor
        influential_matrix = dict()
        crowd_info = [[] for i in range(2)]  #since we have 2 groups
        #initialize the position and id of each pedestrian

        for ped in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(ped, "position")
            ped_id = int(force_model.group_pedestrian_a_property(
                ped, "ped_id"))
            group_id = int(
                force_model.group_pedestrian_a_property(ped, "groupid"))
            crowd_info[group_id].append([ped_id, x, y])

        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            velocity_x = force_model.group_pedestrian_a_property(
                i, "velocity_x")
            if math.isnan(x) == False and math.isnan(
                    y) == False and math.isnan(velocity_x) == False:
                #get ped_id
                ped_id = int(
                    force_model.group_pedestrian_a_property(i, "ped_id"))
                velocity_trajectories[ped_id] = [x + 30, y, velocity_x]

                if x > 50.0 and x < 93:  #we only find the most influential pedestrian in narrowing corridor
                    group_id = int(
                        force_model.group_pedestrian_a_property(i, "groupid"))

                    closest_distance = 999
                    closest_ped = -1
                    #find the nearest pedestrian in the list
                    for member in crowd_info[group_id]:
                        if member[0] != ped_id:
                            temp_distance = math.sqrt((x - member[1])**2 +
                                                      (y - member[2])**2)
                            if temp_distance < closest_distance:
                                closest_distance = temp_distance
                                closest_ped = member[0]

                    influential_matrix[ped_id] = closest_ped

        self.plots._add_new_sample(int(self.time), velocity_trajectories,
                                   influential_matrix)
コード例 #13
0
    def _plot_sample(self):

        population_number = int(force_model.get_population_size())

        effectiveness = []
        turning_angle = []

        #here we also measure the influential matrix of pedestrian in narrowing corridor
        influential_matrix = dict()

        crowd_info = dict()
        #initialize the position and id of each pedestrian
        for ped in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(ped, "position")
            ped_id = int(force_model.group_pedestrian_a_property(
                ped, "ped_id"))
            crowd_info[ped_id] = (x, y)

        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) == False and math.isnan(y) == False:
                test_in_area = self.turning_area.contains_point((x, y))
                if test_in_area:
                    (v_x, v_y) = force_model.group_pedestrian_a_property(
                        i, "velocity_direction")
                    (desired_x,
                     desired_y) = force_model.group_pedestrian_a_property(
                         i, "desired_direction")

                    angle = self.angle_between((v_x, v_y),
                                               (desired_x, desired_y))
                    turning_angle.append(angle)

                    effect = (desired_x * v_x) + (desired_y * v_y)
                    effectiveness.append(effect)

                    #we also find the closest group member of this pedestrian
                    ped_id = int(
                        force_model.group_pedestrian_a_property(i, "ped_id"))
                    friend_zone = force_model.group_pedestrian_a_property(
                        i, "group_list")
                    friend_zone = friend_zone.split('-')
                    friend_zone = [
                        int(friend_zone[index])
                        for index in range(len(friend_zone) - 1)
                    ]

                    #assume closest distance is the 1st friend in the list
                    friend_coordinate = crowd_info[friend_zone[0]]
                    closest_ped_distance = math.sqrt(
                        (x - friend_coordinate[0])**2 +
                        (y - friend_coordinate[1])**2)
                    closest_ped = friend_zone[0]

                    for member in friend_zone:
                        friend_coordinate = crowd_info[member]
                        temp_distance = math.sqrt(
                            (x - friend_coordinate[0])**2 +
                            (y - friend_coordinate[1])**2)
                        if temp_distance < closest_ped_distance:
                            closest_ped_distance = temp_distance
                            closest_ped = member

                    influential_matrix[ped_id] = closest_ped

        total_effective = 0
        if len(effectiveness) > 0:
            total_effective = np.sum(effectiveness)
            total_effective /= len(effectiveness)

        self.plots._add_new_sample(turning_angle, total_effective,
                                   influential_matrix)
コード例 #14
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        current_pedestrian_position = []
        group_num = [
            int(constants.spawn_rate / 2),
            constants.spawn_rate - int(constants.spawn_rate / 2)
        ]
        ids_each_group = []

        #we also need to know the current id of each group
        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            ids_each_group.append(ped_id)
            current_pedestrian_position.append([x, y])

        if self.spawn_new_pedestrians == True:

            context1 = adaptive_context(self.parameters)
            context1._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][0])

            context2 = adaptive_context(self.parameters)
            context2._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][1])

            population_generator1 = PopulationGenerator(
                self.parameters, self.parameters['in_group_a_strength'],
                self.parameters['in_group_a_range'],
                self.parameters['in_group_r_strength'],
                self.parameters['in_group_r_range'],
                self.parameters['out_group_a_strength'],
                self.parameters['out_group_a_range'],
                self.parameters['out_group_r_strength'],
                self.parameters['out_group_r_range'],
                self.parameters['target_a_strength'],
                self.parameters['target_a_range'], group_num)

            population_generator2 = PopulationGenerator(
                self.parameters, self.parameters['in_group_a_strength'],
                self.parameters['in_group_a_range'],
                self.parameters['in_group_r_strength'],
                self.parameters['in_group_r_range'],
                self.parameters['out_group_a_strength'],
                self.parameters['out_group_a_range'],
                self.parameters['out_group_r_strength'],
                self.parameters['out_group_r_range'],
                self.parameters['target_a_strength'],
                self.parameters['target_a_range'], group_num)

            radii_generator1 = context1._get_radii_generators()
            placement_generator1 = context1._get_placement_generators()

            radii_generator2 = context2._get_radii_generators()
            placement_generator2 = context2._get_placement_generators()

            pedestrian_current_id1 = population_generator1._generate_population(
                radii_generator1, placement_generator1, population_number)
            current_ped_generator1 = [
                temp_id
                for temp_id in range(population_number, pedestrian_current_id1)
            ]

            pedestrian_current_id2 = population_generator2._generate_population(
                radii_generator2, placement_generator2, pedestrian_current_id1)
            current_ped_generator2 = [
                temp_id for temp_id in range(pedestrian_current_id1,
                                             pedestrian_current_id2)
            ]

            additional_pedestrians1, additional_id_existed_ped1 = population_generator1._get_generated_group_pedestrians_population(
                ids_each_group + current_ped_generator2)

            additional_pedestrians2, additional_id_existed_ped2 = population_generator2._get_generated_group_pedestrians_population(
                ids_each_group + current_ped_generator1)

            additional_pedestrians = additional_pedestrians1 + additional_pedestrians2
            '''we  need to add additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list1 = additional_id_existed_ped1[ped_id]
                if len(current_list1) > 0:
                    current_list1 = [int(item) for item in current_list1]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)

                current_list2 = additional_id_existed_ped2[ped_id]
                if len(current_list2) > 0:
                    current_list2 = [int(item) for item in current_list2]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)
            '''we add new pedestrian into '''
            if additional_pedestrians is not None and len(
                    additional_pedestrians) > 0:
                for group_member in additional_pedestrians:
                    force_model.add_group_pedestrian(group_member)

            #we then dump these context into folder temp_additional context
            '''dump log file by using frame'''
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_generator1 = frame_context(str(self.frames),
                                             additional_pedestrians1,
                                             additional_id_existed_ped1)
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))
            log_file = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(frame_generator1,
                                  cls=FrameContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

            frame_generator2 = frame_context(str(self.frames),
                                             additional_pedestrians2,
                                             additional_id_existed_ped2)
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))
            log_file = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(frame_generator2,
                                  cls=FrameContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

        else:
            #we get from json file rather than add manually by code
            #the difference between two types is just group list, they should have the same placement
            #so if self.parameters['nearby_in_group'] = 1 we have to re-assign group id for them
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))

            adaptivecontext_file1 = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file1.read()
            currentframecontext1 = json.loads(json_str,
                                              cls=FrameContextLog_Decoder)
            pedestrian_list1 = currentframecontext1.get_pedestrian_list()
            additional_id_existed_ped1 = currentframecontext1.get_additional_id_existed_ped(
            )
            adaptivecontext_file1.close()

            adaptivecontext_file2 = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file2.read()
            currentframecontext2 = json.loads(json_str,
                                              cls=FrameContextLog_Decoder)
            pedestrian_list2 = currentframecontext2.get_pedestrian_list()
            additional_id_existed_ped2 = currentframecontext2.get_additional_id_existed_ped(
            )
            adaptivecontext_file2.close()

            additional_pedestrians = pedestrian_list1 + pedestrian_list2
            '''we  need to add additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list1 = additional_id_existed_ped1[ped_id]
                if len(current_list1) > 0:
                    current_list1 = [int(item) for item in current_list1]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)

                current_list2 = additional_id_existed_ped2[ped_id]
                if len(current_list2) > 0:
                    current_list2 = [int(item) for item in current_list2]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)

            if additional_pedestrians is not None and len(
                    additional_pedestrians) > 0:
                for group_member in additional_pedestrians:
                    force_model.add_group_pedestrian(group_member)
コード例 #15
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        current_pedestrian_position = []

        ids_each_group = []

        #we also need to know the current id of each group
        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            ids_each_group.append(ped_id)
            current_pedestrian_position.append([x, y])

        if self.spawn_new_pedestrians == True:
            #we get new pedestrians
            group_num = [
                int(constants.spawn_rate / 2),
                constants.spawn_rate - int(constants.spawn_rate / 2)
            ]

            context = adaptive_context(self.parameters)
            context._generateContext(current_pedestrian_position, group_num)

            population_generator = PopulationGenerator(
                self.parameters, self.parameters['in_group_a_strength'],
                self.parameters['in_group_a_range'],
                self.parameters['in_group_r_strength'],
                self.parameters['in_group_r_range'],
                self.parameters['out_group_a_strength'],
                self.parameters['out_group_a_range'],
                self.parameters['out_group_r_strength'],
                self.parameters['out_group_r_range'],
                self.parameters['target_a_strength'],
                self.parameters['target_a_range'], group_num)

            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))
            frame_filename = "%s" % (
                str(self.parameters['in_group_r_strength']) + "_" +
                str(self.parameters['in_group_a_strength']) + "_" +
                str(disp_level) + "_" + str(context_index) + "_" +
                str(int(self.frames)))

            adaptivecontext_file = open(
                "%s.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file.read()
            currentframecontext = json.loads(json_str,
                                             cls=AdaptiveContextLog_Decoder)
            radii_generator = currentframecontext._get_radii_generators()
            placement_generator = currentframecontext._get_placement_generators(
            )

            #radii_generator = context._get_radii_generators()
            #placement_generator= context._get_placement_generators()

            population_generator._generate_population(radii_generator,
                                                      placement_generator,
                                                      population_number)
            additional_pedestrians, additional_id_existed_ped = population_generator._get_generated_group_pedestrians_population(
                ids_each_group)
            '''we  need to add additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list = additional_id_existed_ped[ped_id]
                if len(current_list) > 0:
                    current_list = [int(item) for item in current_list]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list),
                                friend_zone=tuple(current_list))

                    force_model.add_additional_group_member(data)
                    #print(ped_id, tuple(current_list))
            '''we add new pedestrian into '''
            if additional_pedestrians is not None and len(
                    additional_pedestrians) > 0:
                for group_member in additional_pedestrians:
                    '''should modify target position based on y'''
                    (x, y) = group_member['position']
                    if y <= self.y_horizontal_line:
                        del group_member['target']
                        group_member['target'] = self.target_upper
                    else:
                        del group_member['target']
                        group_member['target'] = self.target_below

                    force_model.add_group_pedestrian(group_member)

            #we then dump these context into folder temp_additional context
            '''dump log file by using frame'''

            frame_generator = frame_context(str(self.frames),
                                            additional_pedestrians,
                                            additional_id_existed_ped)

            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (
                str(self.parameters['in_group_r_strength']) + "_" +
                str(self.parameters['in_group_a_strength']) + "_" +
                str(disp_level) + "_" + str(context_index) + "_" +
                str(int(self.frames)))

            log_file = open(
                "%s.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(frame_generator, cls=FrameContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

        else:
            #we get from json file rather than add manually by code
            #the difference between two types is just group list, they should have the same placement
            #so if self.parameters['nearby_in_group'] = 1 we have to re-assign group id for them
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (
                str(self.parameters['in_group_r_strength']) + "_" +
                str(self.parameters['in_group_a_strength']) + "_" +
                str(disp_level) + "_" + str(context_index) + "_" +
                str(int(self.frames)))

            adaptivecontext_file = open(
                "%s.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file.read()
            currentframecontext = json.loads(json_str,
                                             cls=FrameContextLog_Decoder)
            pedestrian_list = currentframecontext.get_pedestrian_list()
            additional_id_existed_ped = currentframecontext.get_additional_id_existed_ped(
            )
            adaptivecontext_file.close()
            '''we also need to dump additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list = additional_id_existed_ped[str(ped_id)]
                if len(current_list) > 0:
                    current_list = [int(item) for item in current_list]
                    data = dict(ped_id=int(ped_id),
                                additional_count=len(current_list),
                                friend_zone=tuple(current_list))
                    force_model.add_additional_group_member(data)

            if pedestrian_list is not None and len(pedestrian_list) > 0:
                for group_member in pedestrian_list:
                    '''should modify target position based on y'''
                    (x, y) = group_member['position']
                    if y <= self.y_horizontal_line:
                        del group_member['target']
                        group_member['target'] = self.target_upper
                    else:
                        del group_member['target']
                        group_member['target'] = self.target_below
                    force_model.add_group_pedestrian(group_member)
コード例 #16
0
    def _plot_sample(self):

        population_number = int(force_model.get_population_size())

        effectiveness = []
        turning_angle = []

        #here we also measure the influential matrix of pedestrian in narrowing corridor
        influential_matrix = dict()
        crowd_info = [[] for i in range(2)]  #since we have 2 groups
        #initialize the position and id of each pedestrian

        for ped in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(ped, "position")
            ped_id = int(force_model.group_pedestrian_a_property(
                ped, "ped_id"))
            group_id = int(
                force_model.group_pedestrian_a_property(ped, "groupid"))
            crowd_info[group_id].append([ped_id, x, y])

        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            if math.isnan(x) == False and math.isnan(y) == False:

                test_in_area = self.turning_area.contains_point((x, y))
                if test_in_area:
                    (v_x, v_y) = force_model.group_pedestrian_a_property(
                        i, "velocity_direction")

                    #select vector from desired velocity direction
                    (desired_x,
                     desired_y) = force_model.group_pedestrian_a_property(
                         i, "desired_direction")

                    angle = self.angle_between((v_x, v_y),
                                               (desired_x, desired_y))
                    turning_angle.append(angle)

                    effect = (desired_x * v_x) + (desired_y * v_y)
                    effectiveness.append(effect)

                    ped_id = int(
                        force_model.group_pedestrian_a_property(i, "ped_id"))
                    group_id = int(
                        force_model.group_pedestrian_a_property(i, "groupid"))

                    closest_distance = 999
                    closest_ped = -1
                    #find the nearest pedestrian in the list
                    for member in crowd_info[group_id]:
                        if member[0] != ped_id:
                            temp_distance = math.sqrt((x - member[1])**2 +
                                                      (y - member[2])**2)
                            if temp_distance < closest_distance:
                                closest_distance = temp_distance
                                closest_ped = member[0]

                    influential_matrix[ped_id] = closest_ped

        total_effective = 0
        if len(effectiveness) > 0:
            total_effective = np.sum(effectiveness)
            total_effective /= len(effectiveness)

        self.plots._add_new_sample(turning_angle, total_effective,
                                   influential_matrix)
コード例 #17
0
    def _spawn_pedestrians(self,context_index): #re-change by spawn by file
        
        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())  
        current_pedestrian_position = []
        group_num = [int(constants.spawn_rate/2), constants.spawn_rate - int(constants.spawn_rate/2)]  
        
        for i in range(population_number):
            (x,y) = force_model.group_pedestrian_a_property(i, "position")
            current_pedestrian_position.append([x,y])
  
        if self.spawn_new_pedestrians==True:
            context = adaptive_context(self.parameters)
            context._generateContext(current_pedestrian_position, group_num)
            
            
        else:          
            #we get from json file rather than add manually by code
            disp_level = self.parameters['out_group_r_strength']/self.parameters['in_group_r_strength']
#            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            #frame_filename = "%s" % (str(context_index) + "_" + str(int(self.frames)))

            frame_filename = "%s" % (str(self.parameters['in_group_r_strength']) + "_" + str(self.parameters['in_group_a_strength']) + "_" + str(disp_level) + "_" + 
                                     str(context_index) + "_" + str(int(self.frames)))                    
            
            adaptivecontext_file = open( "%s.json" % os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file.read()
            context=  json.loads(json_str, cls =AdaptiveContextLog_Decoder)
            adaptivecontext_file.close()
        

        population_generator  =  PopulationGenerator(self.parameters,
                                                    self.parameters['in_group_a_strength'],self.parameters['in_group_a_range'],
                                                    self.parameters['in_group_r_strength'],self.parameters['in_group_r_range'],
                                                    self.parameters['out_group_a_strength'],self.parameters['out_group_a_range'],
                                                    self.parameters['out_group_r_strength'],self.parameters['out_group_r_range'],
                                                    self.parameters['target_a_strength'],self.parameters['target_a_range'],group_num)  

        radii_generator = context._get_radii_generators()
        placement_generator= context._get_placement_generators()
                            
        population_generator._generate_population(radii_generator,placement_generator,population_number)          
        additional_pedestrians = population_generator._get_generated_group_pedestrians_population() 
        if additional_pedestrians is not None and len(additional_pedestrians)>0:
            for group_member in  additional_pedestrians:
                '''should modify target position based on y'''
                (x,y) = group_member['position']
                if y <= self.y_horizontal_line:
                    del group_member['target']
                    group_member['target'] = self.target_upper
                else:                                                                
                    del group_member['target']
                    group_member['target'] = self.target_below
                
                force_model.add_group_pedestrian(group_member)                      
        
        
        if self.spawn_new_pedestrians==True:
        #we then dump these context into folder temp_additional context
            disp_level = self.parameters['out_group_r_strength']/self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (str(self.parameters['in_group_r_strength']) + "_" + str(self.parameters['in_group_a_strength']) + "_" + str(disp_level) + "_" + 
                                     str(context_index) + "_" + str(int(self.frames)))      
                    
            log_file = open( "%s.json" % os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(context, cls=AdaptiveContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()
コード例 #18
0
    def _plot_sample(self):
        
        population_number = int(force_model.get_population_size())  

        influential_matrix_split_area = dict()
        influential_matrix_merge_area = dict()
        
        turning_angle_split_area = []
        turning_angle_merge_area = []
        
        effectiveness_split_area = []
        effectiveness_merge_area = []               
                        
        crowd_info =  [[] for i in range(2)] #since we have 2 groups
        #initialize the position and id of each pedestrian
        
        for ped in range(population_number):
            (x,y) = force_model.group_pedestrian_a_property(ped, "position")
            ped_id = int(force_model.group_pedestrian_a_property(ped, "ped_id"))   
            group_id =  int(force_model.group_pedestrian_a_property(ped, "groupid"))          
            crowd_info[group_id].append([ped_id,x,y])
                
        for i in range(population_number):
            (x,y) = force_model.group_pedestrian_a_property(i, "position")

            if math.isnan(x) ==False and math.isnan(y) ==False:                      
 
                test_in_split_area =  self.split_area.contains_point((x,y))      
                if test_in_split_area:
                    (v_x,v_y) = force_model.group_pedestrian_a_property(i,"velocity_direction")
                    (desired_x,desired_y) = force_model.group_pedestrian_a_property(i,"desired_direction")
                                        
                    angle = self.angle_between((v_x,v_y),(desired_x,desired_y))
                    turning_angle_split_area.append(angle)
                    
                    effect =(desired_x* v_x ) + (desired_y * v_y) 
                    effectiveness_split_area.append(effect)                    
                       
                    #get ped_id 
                    ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
                    group_id =  int(force_model.group_pedestrian_a_property(i, "groupid"))                         
                    closest_distance = 999
                    closest_ped = -1
                    #find the nearest pedestrian in the list
                    for member in crowd_info[group_id]:
                        if member[0] != ped_id:                 
                            temp_distance = math.sqrt((x-member[1])**2 + (y-member[2])**2)
                            if temp_distance < closest_distance:
                                closest_distance = temp_distance
                                closest_ped = member[0]
                                
                    
                    influential_matrix_split_area[ped_id] = closest_ped
                                                        
                test_in_merge_area =  self.merge_area.contains_point((x,y))     
                if test_in_merge_area:
                    (v_x,v_y) = force_model.group_pedestrian_a_property(i,"velocity_direction")
                    (desired_x,desired_y) = force_model.group_pedestrian_a_property(i,"desired_direction")
                                        
                    angle = self.angle_between((v_x,v_y),(desired_x,desired_y))
                    turning_angle_merge_area.append(angle)
                    
                    effect =(desired_x* v_x ) + (desired_y * v_y) 
                    effectiveness_merge_area.append(effect) 
                    
                    #get ped_id 
                    ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
                    group_id =  int(force_model.group_pedestrian_a_property(i, "groupid"))                         
                    closest_distance = 999
                    closest_ped = -1
                    #find the nearest pedestrian in the list
                    for member in crowd_info[group_id]:
                        if member[0] != ped_id:                 
                            temp_distance = math.sqrt((x-member[1])**2 + (y-member[2])**2)
                            if temp_distance < closest_distance:
                                closest_distance = temp_distance
                                closest_ped = member[0]
                                
                    
                    influential_matrix_merge_area[ped_id] = closest_ped                                          
                      
        total_effective_split = 0
        if len(effectiveness_split_area)>0:
            total_effective_split = np.sum(effectiveness_split_area)
            total_effective_split /=len(effectiveness_split_area)

        total_effective_merge = 0
        if len(effectiveness_merge_area)>0:
            total_effective_merge = np.sum(effectiveness_merge_area)
            total_effective_merge /=len(effectiveness_merge_area)
                           
        self.plots._add_new_sample(turning_angle_split_area,turning_angle_merge_area,
                                   total_effective_split,total_effective_merge,
                                   influential_matrix_split_area,influential_matrix_merge_area)                    
コード例 #19
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        current_pedestrian_position = []
        group_num = [
            int(constants.spawn_rate / 2),
            constants.spawn_rate - int(constants.spawn_rate / 2)
        ]

        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            current_pedestrian_position.append([x, y])

        if self.spawn_new_pedestrians == True:
            context1 = adaptive_context(self.parameters)
            context1._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][0])

            context2 = adaptive_context(self.parameters)
            context2._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][1])

        else:
            #we get from json file rather than add manually by code
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (str(context_index) + "_" +
                                     str(int(self.frames)))

            adaptivecontext_file1 = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file1.read()
            context1 = json.loads(json_str, cls=AdaptiveContextLog_Decoder)
            adaptivecontext_file1.close()

            adaptivecontext_file2 = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file2.read()
            context2 = json.loads(json_str, cls=AdaptiveContextLog_Decoder)
            adaptivecontext_file2.close()

        population_generator = PopulationGenerator(
            self.parameters, self.parameters['in_group_a_strength'],
            self.parameters['in_group_a_range'],
            self.parameters['in_group_r_strength'],
            self.parameters['in_group_r_range'],
            self.parameters['out_group_a_strength'],
            self.parameters['out_group_a_range'],
            self.parameters['out_group_r_strength'],
            self.parameters['out_group_r_range'],
            self.parameters['target_a_strength'],
            self.parameters['target_a_range'], group_num)

        radii_generator1 = context1._get_radii_generators()
        placement_generator1 = context1._get_placement_generators()

        pedestrian_current_id = population_generator._generate_population(
            radii_generator1, placement_generator1, population_number)
        additional_pedestrians1 = population_generator._get_generated_group_pedestrians_population(
        )
        if additional_pedestrians1 is not None and len(
                additional_pedestrians1) > 0:
            for group_member in additional_pedestrians1:
                force_model.add_group_pedestrian(group_member)

        radii_generator2 = context2._get_radii_generators()
        placement_generator2 = context2._get_placement_generators()

        population_generator._generate_population(radii_generator2,
                                                  placement_generator2,
                                                  pedestrian_current_id)
        additional_pedestrians2 = population_generator._get_generated_group_pedestrians_population(
        )
        if additional_pedestrians2 is not None and len(
                additional_pedestrians2) > 0:
            for group_member in additional_pedestrians2:
                force_model.add_group_pedestrian(group_member)

        if self.spawn_new_pedestrians == True:
            #we then dump these context into folder temp_additional context
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))

            log_file = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(context1, cls=AdaptiveContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))

            log_file = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(context2, cls=AdaptiveContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()
コード例 #20
0
    def _spawn_pedestrians(self,context_index): #re-change by spawn by file
        
        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())  
        ids_each_group = []
                
        for i in range(population_number):
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            ids_each_group.append(ped_id)
             
        #we get from json file rather than add manually by code
        disp_level = self.parameters['out_group_r_strength']/self.parameters['in_group_r_strength']
        frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
                    
        adaptivecontext_file1 = open( "%s_1.json" % os.path.join(self.adaptive_context_dir,frame_filename))
        json_str = adaptivecontext_file1.read()
        currentframecontext1=  json.loads(json_str, cls=FrameContextLog_Decoder)
        pedestrian_list1 = currentframecontext1.get_pedestrian_list()
        additional_id_existed_ped1 = currentframecontext1.get_additional_id_existed_ped()            
        adaptivecontext_file1.close()

        adaptivecontext_file2 = open( "%s_2.json" % os.path.join(self.adaptive_context_dir, frame_filename))
        json_str = adaptivecontext_file2.read()
        currentframecontext2=  json.loads(json_str, cls=FrameContextLog_Decoder)
        pedestrian_list2 = currentframecontext2.get_pedestrian_list()
        additional_id_existed_ped2 = currentframecontext2.get_additional_id_existed_ped()
        adaptivecontext_file2.close()

        additional_pedestrians = pedestrian_list1 + pedestrian_list2
                                 
        '''we  need to add additional for existed ped here'''
        #we also need to update friend list for existed pedestrians
        for ped_id in ids_each_group:
            #we need to fetch that friend list for this pedestrian and update in model             
            current_list1 = additional_id_existed_ped1[str(ped_id)] 
            if len(current_list1)>0:
                current_list1 = [int(item) for item in current_list1]
                data = dict(ped_id=ped_id,
                        additional_count = len(current_list1),
                        friend_zone = tuple(current_list1))

                force_model.add_additional_group_member(data)
                
            current_list2 = additional_id_existed_ped2[str(ped_id)]                 
            if len(current_list2)>0:
                current_list2 = [int(item) for item in current_list2]
                data = dict(ped_id=ped_id,
                        additional_count = len(current_list1),
                        friend_zone = tuple(current_list1))

                force_model.add_additional_group_member(data) 
                                                                    
        if additional_pedestrians is not None and len(additional_pedestrians)>0:
            for group_member in  additional_pedestrians:         
                position = (group_member['position'][0]-self.shift_x,group_member['position'][1]+self.shift_y)#
                del group_member['position']
                group_member['position'] = position
            
                target =  (group_member['target'][0]-self.shift_x,group_member['target'][1]+self.shift_y)#
                del group_member['target']
                group_member['target'] = target     
                                       
                force_model.add_group_pedestrian(group_member)