コード例 #1
0
                row_txt[11], row_txt[
                    12] = f'{lineFlux:.3f}', f'{lineFluxErr:.3f}'
                row_txt[13] = percent_func_txt(obsFlux, lineFlux)

            if lineLabel in srPlus_lineLabels:
                i_line = sr_lineLabels.index(lineLabel)
                row_data[6] = r'${:.3f}\pm{:.3f}$'.format(
                    mean_plus_line_values[i_line],
                    std_plus_line_values[i_line])
                row_data[6] += percent_func(obsFlux,
                                            mean_plus_line_values[i_line])

                row_txt[14], row_txt[
                    15] = f'{mean_plus_line_values[i_line]:.3f}', f'{std_plus_line_values[i_line]:.3f}'
                row_txt[16] = percent_func_txt(obsFlux,
                                               mean_plus_line_values[i_line])

            pdf.addTableRow(row_data, last_row=False)
            tableDF.loc[lineLabel] = row_txt

        pdf.table.add_hline()

        table_file = tables_folder / f'{obj}_lineFitFluxComparison'
        pdf.generate_pdf(table_file, clean_tex=True)

        # Save the table as a dataframe.
        with open(f'{table_file}.txt', 'wb') as output_file:
            string_DF = tableDF.to_string()
            output_file.write(string_DF.encode('UTF-8'))
コード例 #2
0
def table_line_fluxes(table_address,
                      db_dict,
                      combined_dict={},
                      file_type='table'):

    # Table headers
    headers = [
        'Line', 'Observed flux', 'Mean', 'Standard deviation', 'Median',
        r'$16^{th}$ $percentil$', r'$84^{th}$ $percentil$', r'$Difference\,\%$'
    ]

    # Create containers
    tableDF = pd.DataFrame(columns=headers[1:])

    pdf = PdfPrinter()
    pdf.create_pdfDoc(pdf_type=file_type)
    pdf.pdfDoc.append(
        NoEscape('\definecolor{background}{rgb}{0.169, 0.169, 0.169}'))
    pdf.pdfDoc.append(
        NoEscape('\definecolor{foreground}{rgb}{0.702, 0.780, 0.847}'))
    pdf.pdfDoc.append(NoEscape(r'\arrayrulecolor{foreground}'))

    pdf.pdf_insert_table(headers,
                         color_font='foreground',
                         color_background='background')

    # Input data
    inputLabels = db_dict['Input_data']['lineLabels_list']
    inFlux, inErr = db_dict['Input_data']['inputFlux_array'], db_dict[
        'Input_data']['inputErr_array']

    # Output data
    flux_matrix = db_dict['trace']['calcFluxes_Op']
    mean_line_values = flux_matrix.mean(axis=0)
    std_line_values = flux_matrix.std(axis=0)
    median_line_values = np.median(flux_matrix, axis=0)
    p16th_line_values = np.percentile(flux_matrix, 16, axis=0)
    p84th_line_values = np.percentile(flux_matrix, 84, axis=0)

    # Array wih true error values for flux
    diff_Percentage = np.round((1 - (median_line_values / inFlux)) * 100, 2)
    diff_Percentage = list(map(str, diff_Percentage))

    ion_array, wave_array, latexLabel_array = label_decomposition(
        inputLabels, combined_dict=combined_dict)

    for i in range(inFlux.size):

        # label = label_formatting(inputLabels[i])

        row_i = [
            latexLabel_array[i], inFlux[i], mean_line_values[i],
            std_line_values[i], median_line_values[i], p16th_line_values[i],
            p84th_line_values[i], diff_Percentage[i]
        ]

        pdf.addTableRow(
            row_i,
            last_row=False if inputLabels[-1] != inputLabels[i] else True,
            color_font='foreground',
            color_background='background')
        tableDF.loc[inputLabels[i]] = row_i[1:]

    pdf.generate_pdf(table_address)

    # Save the table as a dataframe.
    with open(f'{table_address}.txt', 'wb') as output_file:
        string_DF = tableDF.to_string()
        output_file.write(string_DF.encode('UTF-8'))
コード例 #3
0
        flux_intg, flux_intgErr = lm.linesDF.loc[
            lineLabel, 'intg_flux'], lm.linesDF.loc[lineLabel, 'intg_err']
        flux_gauss, flux_gaussErr = lm.linesDF.loc[
            lineLabel, 'gauss_flux'], lm.linesDF.loc[lineLabel, 'gauss_err']

        eqw_entry = r'${:0.2f}$ $\pm$ ${:0.2f}$'.format(eqw, eqwErr)
        intgF_entry = r'${:0.2f}$ $\pm$ ${:0.2f}$'.format(
            flux_intg / flux_Hbeta, flux_intgErr / flux_Hbeta)
        gaussF_entry = r'${:0.2f}$ $\pm$ ${:0.2f}$'.format(
            flux_gauss / flux_Hbeta, flux_gaussErr / flux_Hbeta)

        if lm.linesDF.loc[lineLabel, 'blended_label'] == 'None':
            colorGrade = colorChooser(flux_intg / flux_gauss, 1.0)
        else:
            colorGrade = 'black'

        gaussF_color_entry = r'\textcolor{{{}}}{{{}}}'.format(
            colorGrade, gaussF_entry)
        lastRow_check = True if lineLabel == obsLines[-1] else False
        pdf.addTableRow(
            [label_entry, eqw_entry, intgF_entry, gaussF_color_entry],
            last_row=lastRow_check)

    # Plot the matched lines:
    lm.plot_line_mask_selection(lm.linesDF,
                                ncols=5,
                                output_address=figureLogAddress)

    # Generate the table
    pdf.generate_pdf(clean_tex=True)
コード例 #4
0
    wave_rest, flux, header = sr.import_fits_data(fitsFolder/fitsFile, instrument='SDSS')
    idx_wave = (wave_rest >= obsData['sample_data']['wmin_array']) & (wave_rest <= obsData['sample_data']['wmax_array'])

    # Load line measurer object
    lm = sr.LineMesurer(wave_rest[idx_wave], flux[idx_wave], lineLogFolder / lineLogFile, normFlux=flux_norm)

    # Measure line fluxes
    idcs_lines = ~lm.linesDF.index.str.contains('_b')
    obsLines = lm.linesDF.loc[idcs_lines].index.values

    # Equivalent width Hbeta
    eqw_Hbeta, eqwErr_Hbeta = lm.linesDF.loc['H1_4861A', 'eqw'], lm.linesDF.loc['H1_4861A', 'eqw_err']
    eqw_entry = r'${:0.2f}$ $\pm$ ${:0.2f}$'.format(eqw_Hbeta, eqwErr_Hbeta)

    # Normalizing flux
    flux_Halpha = lm.linesDF.loc['H1_6563A', 'gauss_flux']
    flux_Hbeta = lm.linesDF.loc['H1_4861A', 'intg_flux']
    halpha_norm = flux_Halpha / flux_Hbeta
    halphaRatio_entry = r'${:0.2f}$'.format(halpha_norm)
    colorGrade = colorChooser(halpha_norm, 2.86)
    RatioComparison = r'\textcolor{{{}}}{{{}}}'.format(colorGrade, halphaRatio_entry)

    # Reddening coefficient
    rc = pn.RedCorr(R_V=3.4, law='G03 LMC')
    rc.setCorr(obs_over_theo=halpha_norm/2.86, wave1=6563., wave2=4861.)
    cHbeta_entry = r'${:0.2f}$'.format(rc.cHbeta)
    pdf.addTableRow([objName, eqw_entry, cHbeta_entry, RatioComparison], last_row=True if file_address == addressList[-1] else False)

# Generate the table
pdf.generate_pdf(clean_tex=True)
コード例 #5
0
    'Mass presently availabled': 'LOGMEAVE',
    'Mass > 1 Myr': 'LOGPEAVE'
}

row_headers = list(dict_ref.keys())
tables_folder = Path(obsData['file_information']['tables_folder'])

for i, obj in enumerate(objList):

    pdf = PdfPrinter()
    row_object = [''] * len(row_headers)
    row_object[5] = obj
    pdf.create_pdfDoc(pdf_type='table')
    pdf.pdf_insert_table(row_object, addfinalLine=False)
    pdf.table.add_hline()
    pdf.addTableRow(row_headers, last_row=False, rounddig=2)
    pdf.table.add_hline()

    # Declare input files
    objFolder = resultsFolder / f'{obj}'
    results_file = objFolder / f'{obj}_{ext}_measurements.txt'

    # Declare output file
    table_file = tables_folder / f'{obj}_FadoFitting'

    # # Load the data
    results_dict = sr.loadConfData(results_file, group_variables=False)

    for j, ssp_lib in enumerate(ssp_lib_list):

        section_label = f'{ssp_lib}_FADO'
コード例 #6
0
        # Correct the flux
        corr = rc.getCorrHb(wavelength)
        intensity, intensityErr = flux * corr, fluxErr * corr

        # Format the entries
        eqw_entry = r'${:0.2f}\pm{:0.2f}$'.format(eqw, eqwErr)
        flux_entry = r'${:0.2f}\pm{:0.2f}$'.format(flux, fluxErr)
        intensity_entry = r'${:0.2f}\pm{:0.2f}$'.format(
            intensity, intensityErr)

        # Add row of data
        row_i = [label_entry, eqw_entry, flux_entry, intensity_entry]
        lastRow_check = True if lineLabel == obsLines[-1] else False

        pdf.addTableRow([label_entry, eqw_entry, flux_entry, intensity_entry],
                        last_row=lastRow_check)
        tableDF.loc[lineLabel] = row_i[1:]

    # Data last rows
    row_Hbetaflux = [
        r'$H\beta$ $(erg\,cm^{-2} s^{-1} \AA^{-1})$', '',
        flux_Hbeta * flux_norm, flux_Hbeta * flux_norm * rc.getCorr(4861)
    ]
    row_cHbeta = [r'$c(H\beta)$', '', rc.cHbeta, '']

    pdf.addTableRow(row_Hbetaflux, last_row=False)
    pdf.addTableRow(row_cHbeta, last_row=False)
    tableDF.loc[row_Hbetaflux[0]] = row_Hbetaflux[1:]
    tableDF.loc[row_cHbeta[0]] = row_cHbeta[1:]

    # Format last rows
コード例 #7
0
        param_value = (np.mean(trace), np.std(trace))
        if param == 'Teff':
            param_entry = r'${:.0f}\pm{:.0f}$'.format(param_value[0],
                                                      param_value[1])
        else:
            param_entry = r'${:.2f}\pm{:.2f}$'.format(param_value[0],
                                                      param_value[1])
        row_data[4] = param_entry

        # Bayesian Direct method + HII-CHI-mistry
        if outputDirectHIIchemDb.is_file():
            model_fit = sr.load_MC_fitting(outputDirectHIIchemDb)
            trace = model_fit['trace'][param]
            param_value = (np.mean(trace), np.std(trace))
            if param == 'Teff':
                param_entry = r'${:.0f}\pm{:.0f}$'.format(
                    param_value[0], param_value[1])
            else:
                param_entry = r'${:.2f}\pm{:.2f}$'.format(
                    param_value[0], param_value[1])
            row_data[5] = param_entry

        pdf.addTableRow(row_data,
                        color_background='background',
                        color_font='foreground')

pdf.table.add_hline()

table_file = tables_folder / f'photo-ionization_param_comparison'
pdf.generate_pdf(table_file, clean_tex=False)
コード例 #8
0
]
row_subHeaders = [
    'Line label', r'$f_{\lambda}$', r'$F(\lambda)$', r'$I(\lambda)$',
    r'$F(\lambda)$', r'$I(\lambda)$', r'$F(\lambda)$', r'$I(\lambda)$'
]

# Table heading
pdf = PdfPrinter()
pdf.create_pdfDoc(pdf_type='table')
pdf.pdf_insert_table(row_headers,
                     table_format=table_header_format,
                     addfinalLine=False)
# pdf.table.add_hline(3, 4, cmidruleoption='l{10pt}r{2pt}')
# pdf.table.add_hline(5, 6)
# pdf.table.add_hline(7, 8)
pdf.addTableRow(row_subHeaders, last_row=True)
# Table body
for i, linelabel in enumerate(tableDF.index):

    # Line reference
    if (tableDF.loc[linelabel, 'blended_label'] == 'None') or ('_m'
                                                               in linelabel):
        label_ref = tableDF.loc[linelabel, 'latexLabel']
    else:
        label_ref = tableDF.loc[linelabel, 'latexLabel'][:-1] + '_g$'

    # Line lambda
    lambda_ref = f'{tableDF.loc[linelabel, "f_lambda"]:0.2f}'

    # List for table row
    row_data = [label_ref, lambda_ref] + ['-'] * 6
コード例 #9
0
atomic_data_dict = {'T_low': r'$Normal(\mu=15,000K,\sigma=5000K)$',
                    'T_high': r'$Normal(\mu=15,000K,\sigma=5000K)$',
                    'n_e': r'$HalfCauchy(\mu=2.0,\sigma=0)$',
                    'cHbeta': r'$HalfCauchy(\mu=2.0,\sigma=0)$',
                    'log(X_i+)': r'$Normal(\mu=5,\sigma=5)$',
                    'log(He1r)': r'$Normal(\mu=0,\sigma=3)$',
                    'log(He2r)': r'$Normal(\mu=0,\sigma=3)$',
                    'Teff': r'$Uniform(min=30,000K, max=90,000K)$',
                    'logU': r'$Uniform(min=-4.0, max=-1.0K)$'}

tables_folder = Path('/home/vital/Dropbox/Astrophysics/Seminars/UniVapo 2021/')

pdf = PdfPrinter()

pdf.create_pdfDoc(pdf_type='table')
pdf.pdfDoc.append(NoEscape('\definecolor{background}{rgb}{0.169, 0.169, 0.169}'))
pdf.pdfDoc.append(NoEscape('\definecolor{foreground}{rgb}{0.702, 0.780, 0.847}'))
pdf.pdfDoc.append(NoEscape(r'\arrayrulecolor{foreground}'))

pdf.pdf_insert_table(['Parameter', 'Prior distribution'],
                     addfinalLine=True, color_font='foreground', color_background='background')

for ion, params in atomic_data_dict.items():
    ion_label = latex_labels[ion]
    row = [ion_label, params]
    pdf.addTableRow(row, last_row=False, color_font='foreground', color_background='background')

pdf.table.add_hline()
pdf.generate_pdf(tables_folder/'posteriors_table', clean_tex=True)

コード例 #10
0
pdf.create_pdfDoc(pdf_type=None)
pdf.pdf_insert_table(table_headers, addfinalLine=True)

for i, obj in enumerate(objList):

    if i < 3:

        row = ['-'] * len(table_headers)
        objData = obsData[obj]

        # row[0] = objData['SDSS_label']
        row[0] = r'\href{{{}}}{{{}}}'.format(
            objData['SDSS_website'].replace('&', '\&'), objData['SDSS_label'])
        print(row[0])
        row[1] = objRef[i]
        row[2] = objData['RA']
        row[3] = objData['DEC']
        row[4] = objData['z']
        row[5] = f'{objData["grism_b"]}, {objData["grism_r"]}'
        # row[5] = f'{objData["grism_b"]} (blue), {objData["grism_r"]}(red)'
        row[6] = r'${}\times{}s$'.format(objData["exp_number"],
                                         objData["exp_time"])
        row[7] = r'$\approx {}$'.format(objData["seeing"])
        row[8] = f'{objData["standard_blue"]}, {objData["standard_red"]}'
        # row[8] = f'{objData["standard_blue"]} (blue), {objData["standard_red"]}(red)'
        # row[9] = f'{objData["night_type"]} night'

        pdf.addTableRow(row, last_row=False)

pdf.table.add_hline()
pdf.generate_pdf(tables_folder / 'night_log')
コード例 #11
0
        row_data[3] = param_entry

        # Bayesian HII-CHI-mistry
        model_fit = sr.load_MC_fitting(outputPiDb)
        trace = model_fit['trace'][param]
        param_value = (np.mean(trace), np.std(trace))
        if param == 'Teff':
            param_entry = r'${:.0f}\pm{:.0f}$'.format(param_value[0], param_value[1])
        else:
            param_entry = r'${:.2f}\pm{:.2f}$'.format(param_value[0], param_value[1])
        row_data[4] = param_entry

        # Bayesian Direct method + HII-CHI-mistry
        if outputDirectHIIchemDb.is_file():
            model_fit = sr.load_MC_fitting(outputDirectHIIchemDb)
            trace = model_fit['trace'][param]
            param_value = (np.mean(trace), np.std(trace))
            if param == 'Teff':
                param_entry = r'${:.0f}\pm{:.0f}$'.format(param_value[0], param_value[1])
            else:
                param_entry = r'${:.2f}\pm{:.2f}$'.format(param_value[0], param_value[1])
            row_data[5] = param_entry

        pdf.addTableRow(row_data)

pdf.table.add_hline()

table_file = tables_folder / f'photo-ionization_param_comparison'
pdf.generate_pdf(table_file)

コード例 #12
0
                                     'intg_err'] / flux_Hbeta * scaleTable
            flux_gauss = objDF.loc[lineLabel,
                                   'gauss_flux'] / flux_Hbeta * scaleTable
            flux_gaussErr = objDF.loc[lineLabel,
                                      'gauss_err'] / flux_Hbeta * scaleTable

            if objDF.loc[lineLabel, 'blended_label'] != 'None':
                flux, fluxErr = flux_gauss, flux_gaussErr
            else:
                flux, fluxErr = flux_intg, flux_intgErr

            # Correct the flux
            wavelength = objDF.loc[lineLabel, 'wavelength']
            corr = rc.getCorrHb(wavelength)
            intensity, intensityErr = flux * corr, fluxErr * corr

            flux_entry = r'${:0.2f}$ $\pm$ ${:0.2f}$'.format(flux, fluxErr)
            intensity_entry = r'${:0.2f}$ $\pm$ ${:0.2f}$'.format(
                intensity, intensityErr)

        else:
            eqw_entry, flux_entry, intensity_entry, cHbeta_entry = '-', '-', '-', '-'

        lastRow_check = True if obj == objectList[-1] else False
        pdf.addTableRow(
            [obj, eqw_entry, flux_entry, intensity_entry, cHbeta_entry],
            last_row=lastRow_check)

    # Generate the table
    pdf.generate_pdf(clean_tex=True)