default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() if args.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet else: from src.squeezenet import SqueezeNet_Residual as squeezenet if args.dataset == "cifar10": num_classes = 10 else: num_classes = 1000 context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': net = squeezenet(num_classes=num_classes) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) input_data = Tensor( np.zeros([args.batch_size, 3, args.height, args.width], np.float32)) export(net, input_data, file_name=args.file_name, file_format=args.file_format)
# init context device_id = os.getenv('DEVICE_ID') device_id = int(device_id) if device_id else 0 context.set_context(mode=context.GRAPH_MODE, device_target=target, device_id=device_id) # create dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, target=target) step_size = dataset.get_dataset_size() # define net net = squeezenet(num_classes=config.class_num) # load checkpoint param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) # define loss if args_opt.dataset == "imagenet": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, reduction='mean', smooth_factor=config.label_smooth_factor, num_classes=config.class_num) else: