コード例 #1
0
def execute_classic_strategy(df, commission, data_name, start_date, end_date):
    """
    Execute classic strategy on data history contained in df
    :param df: dataframe with historical data
    :param commision: commission to be paid on each operation
    :param data_name: quote data name
    :param start_date: start date of simulation
    :param end_date: end date of simulation
    :return:
        - Classic_Cerebro - execution engine
        - Classic_Strategy - classic strategy instance
    """

    print_execution_name("Estrategia: clásica")

    strategy_name = 'estrategia_clasica'

    info = {
        'Mercado': data_name,
        'Estrategia': strategy_name,
        'Fecha inicial': start_date,
        'Fecha final': end_date
    }

    df = df[start_date:end_date]

    Classic_Strategy = ClassicStrategy
    Classic_Cerebro = execute_strategy(Classic_Strategy, df, commission, info)

    # Save simulation chart
    execution_plot.plot_simulation(Classic_Cerebro, strategy_name, data_name,
                                   start_date, end_date)

    return Classic_Cerebro, Classic_Strategy
コード例 #2
0
def execute_buy_and_hold_strategy(df, commission, data_name, start_date,
                                  end_date):
    """
    Execute buy and hold strategy on data history contained in df
    :param df: dataframe with historical data
    :param commision: commission to be paid on each operation
    :param data_name: quote data name
    :param start_date: start date of simulation
    :param end_date: end date of simulation
    :return:
        - BH_Cerebro - execution engine
        - BH_Strategy - buy and hold strategy instance
    """

    print_execution_name("Estrategia: comprar y mantener")

    strategy_name = 'comprar_y_mantener'

    info = {
        'Mercado': data_name,
        'Estrategia': strategy_name,
        'Fecha inicial': start_date,
        'Fecha final': end_date
    }

    df = df[start_date:end_date]

    BH_Strategy = BuyAndHoldStrategy
    BH_Cerebro = execute_strategy(BH_Strategy, df, commission, info)

    # Save simulation chart
    execution_plot.plot_simulation(BH_Cerebro, strategy_name, data_name,
                                   start_date, end_date)

    return BH_Cerebro, BH_Strategy
コード例 #3
0
def execute_moving_averages_cross_strategy(df,
                                           commission,
                                           data_name,
                                           start_date,
                                           end_date,
                                           optimize=False,
                                           **kwargs):
    """
    Execute moving averages cross strategy on data history contained in df
    :param df: dataframe with historical data
    :param commision: commission to be paid on each operation
    :param data_name: quote data name
    :param start_date: start date of simulation
    :param end_date: end date of simulation
    :param optimize: if True then optimize strategy
    :return:
        - MAC_Cerebro - execution engine
        - MAC_Strategy - moving averages cross strategy instance
    """

    print_execution_name("Estrategia: cruce de medias móviles")

    strategy_name = 'estrategia_cruce_medias_moviles'

    info = {
        'Mercado': data_name,
        'Estrategia': strategy_name,
        'Fecha inicial': start_date,
        'Fecha final': end_date
    }

    if optimize:
        print('Optimizando (esto puede tardar)...')

        # Range of values to optimize
        params = {'ma_short': range(5, 30), 'ma_long': range(14, 60)}

        # Get best params in past period
        kwargs = optimize_strategy(df, commission, MovingAveragesCrossStrategy,
                                   start_date, **params)

    df = df[start_date:end_date]

    MAC_Strategy = MovingAveragesCrossStrategy
    MAC_Cerebro = execute_strategy(MAC_Strategy, df, commission, info,
                                   **kwargs)

    # Save simulation chart
    execution_plot.plot_simulation(MAC_Cerebro, strategy_name, data_name,
                                   start_date, end_date)

    return MAC_Cerebro, MAC_Strategy
コード例 #4
0
def execute_one_moving_average_strategy(df,
                                        commission,
                                        data_name,
                                        start_date,
                                        end_date,
                                        optimize=False,
                                        **kwargs):
    """
    Execute one moving average strategy on data history contained in df
    :param df: dataframe with historical data
    :param commision: commission to be paid on each operation
    :param data_name: quote data name
    :param start_date: start date of simulation
    :param end_date: end date of simulation
    :return:
        - OMA_Cerebro - execution engine
        - OMA_Strategy - one moving average strategy instance
    """

    print_execution_name("Estrategia: media móvil")

    strategy_name = 'estrategia_media_movil'

    info = {
        'Mercado': data_name,
        'Estrategia': strategy_name,
        'Fecha inicial': start_date,
        'Fecha final': end_date
    }

    if optimize:
        print('Optimizando (esto puede tardar)...')

        params = {'ma_period': range(5, 50)}

        # Get best params in past period
        kwargs = optimize_strategy(df, commission, OneMovingAverageStrategy,
                                   start_date, **params)

    df = df[start_date:end_date]

    OMA_Strategy = OneMovingAverageStrategy
    OMA_Cerebro = execute_strategy(OMA_Strategy, df, commission, info,
                                   **kwargs)

    # Save simulation chart
    execution_plot.plot_simulation(OMA_Cerebro, strategy_name, data_name,
                                   start_date, end_date)

    return OMA_Cerebro, OMA_Strategy
コード例 #5
0
def execute_pso_strategy(df,
                         options,
                         retrain_params,
                         commission,
                         data_name,
                         s_test,
                         e_test,
                         iters=100,
                         normalization='exponential'):
    """
    Execute particle swarm optimization strategy on data history contained in df
    :param df: dataframe with historical data
    :param options: dict with the following parameters
        - c1 - cognitive parameter with which the particle follows its personal best
        - c2 - social parameter with which the particle follows the swarm's global best position
        - w - parameter that controls the inertia of the swarm's movement
    :param commision: commission to be paid on each operation
    :param data_name: quote data name
    :param start_date: start date of simulation
    :param end_date: end date of simulation
    :return:
        - PSO_Cerebro - execution engine
        - PSO_Strategy - pso strategy instance
    """

    print_execution_name("Estrategia: particle swar optimization")

    strategy_name = 'particle_swarm_optimization'

    info = {
        'Mercado': data_name,
        'Estrategia': strategy_name,
        'Fecha inicial': s_test,
        'Fecha final': e_test
    }

    # ------------ Obtenemos los conjuntos de train y test ------------ #

    s_test_date = datetime.strptime(s_test, '%Y-%m-%d')
    s_train = s_test_date.replace(year=s_test_date.year - 2)
    #s_train = s_test_date - timedelta(days=180)
    e_train = s_test_date - timedelta(days=1)

    gen_representation = geneticRepresentation.GeneticRepresentation(
        df, s_train, e_train, s_test, e_test)

    # ------------ Fijamos hiperparámetros ------------ #

    n_particles = 50
    num_neighbors = 10
    minkowski_p_norm = 2
    options['k'] = num_neighbors
    options['p'] = minkowski_p_norm
    dimensions = len(gen_representation.moving_average_rules) + 2

    if normalization == 'exponential':
        max_bound = 1.0 * np.ones(dimensions - 2)
        min_bound = -max_bound
    elif normalization == 'l1':
        max_bound = 1.0 * np.ones(dimensions - 2)
        min_bound = np.zeros(dimensions - 2)

    max_bound = np.append(max_bound, [1.0, 0.0])
    min_bound = np.append(min_bound, [0.0, -1.0])
    bounds = (min_bound, max_bound)

    # Call instance of PSO
    optimizer = ps.single.GlobalBestPSO(n_particles=n_particles,
                                        dimensions=dimensions,
                                        options=options,
                                        bounds=bounds)

    # Perform optimization
    kwargs = {'from_date': s_train, 'to_date': e_train}
    best_cost, best_pos = optimizer.optimize(gen_representation.cost_function,
                                             iters=iters,
                                             n_processes=2,
                                             **kwargs)

    # Create an instance from CombinedSignalStrategy class and assign parameters
    PSO_Strategy = CombinedSignalStrategy
    w, buy_threshold, sell_threshold = func_utils.get_split_w_threshold(
        best_pos)

    PSO_Strategy.w = w
    PSO_Strategy.buy_threshold = buy_threshold
    PSO_Strategy.sell_threshold = sell_threshold
    PSO_Strategy.moving_average_rules = gen_representation.moving_average_rules
    PSO_Strategy.moving_averages = gen_representation.moving_averages_test
    PSO_Strategy.optimizer = optimizer
    PSO_Strategy.gen_representation = gen_representation
    PSO_Strategy.normalization = normalization
    PSO_Strategy.retrain_params = retrain_params

    df_test = gen_representation.df_test
    df_train = gen_representation.df_train

    PSO_Cerebro = execute_strategy(PSO_Strategy, df_test, commission, info,
                                   retrain_params)

    # Guardamos la grafica de la simulacion
    execution_plot.plot_simulation(PSO_Cerebro, 'particle_swarm_optimization',
                                   data_name, s_test, e_test)

    return PSO_Cerebro, PSO_Strategy
コード例 #6
0
def execute_neural_network_strategy(df, options, commission, data_name,
                                    start_date, end_date):
    """
    Execute neural network strategy on data history contained in df
    :param df: dataframe with historical data
    :param options: dict with the following parameters
        - gain - gain threshold in simulation of labelling
        - loss - loss threshold simulation of labelling
        - n_day - number of days in simulation of labelling
        - epochs - number of epochs to train the neural network
    :param commission: commission to be paid on each operation
    :param data_name: quote data name
    :param start_date: start date of simulation
    :param end_date: end date of simulation
    :return:
        - NN_Cerebro - execution engine
        - NN_Strategy - neural network strategy instance
    """

    print_execution_name("Estrategia: red neuronal")

    strategy_name = 'red_neuronal'

    info = {
        'Mercado': data_name,
        'Estrategia': strategy_name,
        'Fecha inicial': start_date,
        'Fecha final': end_date
    }

    # Get parameters
    gain = options['gain']
    loss = options['loss']
    n_day = options['n_day']
    epochs = options['epochs']

    s_test_date = datetime.strptime(start_date, '%Y-%m-%d')
    s_train = s_test_date.replace(year=s_test_date.year - 2)
    e_train = s_test_date - timedelta(days=1)

    # Preprocess dataset
    df = func_utils.add_features(df)
    df = func_utils.add_label(df,
                              gain=gain,
                              loss=loss,
                              n_day=n_day,
                              commission=commission)

    # Split train and test
    df_train, df_test, X_train, X_test, y_train, y_test = func_utils.split_df_date(
        df, s_train, e_train, start_date, end_date)

    # Normalization
    print("Normalizando datos...")
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.fit_transform(X_test)

    # Transform data in a correct format to use in Keras
    X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
    X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

    # Get prediction model
    print("Entrenando red neuronal...")
    neural_network = model.NeuralNetwork()
    neural_network.build_model(input_shape=(X_train.shape[1], 1))
    neural_network.train(X_train, y_train, epochs=epochs)

    # Get accuraccy
    train_accuracy = neural_network.get_accuracy(X_train, y_train)
    test_accuracy = neural_network.get_accuracy(X_test, y_test)

    print("\nRESULTADOS PREDICCION:\n")
    print("TRAIN :: Porcentaje de acierto: " + str(train_accuracy))
    print("TEST  :: Porcentaje de acierto: " + str(test_accuracy))

    # ------------------------ Backtesting ------------------------ #

    # Initialize neural network memory
    neural_network.init_memory(X_train[len(X_train) - 15:len(X_train)],
                               y_train[len(y_train) - 15:len(y_train)])

    # Create an instance from NeuralNetworkStrategy class and assign parameters
    NN_Strategy = NeuralNetworkStrategy
    NN_Strategy.X_test = X_test
    NN_Strategy.y_test = y_test
    NN_Strategy.model = neural_network
    NN_Strategy.n_day = n_day

    # Execute strategy
    NN_Cerebro = execute_strategy(NN_Strategy, df_test, commission, info,
                                  options)

    # Save simulation chart
    execution_plot.plot_simulation(NN_Cerebro, strategy_name, data_name,
                                   start_date, end_date)

    return NN_Cerebro, NN_Strategy
コード例 #7
0
def printAnalysisPDF(cerebro, info, params, metrics, training_params=None):
    '''
    Function to generate a report in PDF format.
    :param cerebro: backtrader engine (necesary for plot)
    :param file_name: file name to print the analysis
    :param data_name: quote data name
    :param initial_value: initial value of the portfolio
    :param final_value: final value of the portfolio
    :param tradeAnalyzer: trade analyzer instance
    :param drawDownAnalyzer: drawdown analyzer instance
    :param myAnalyzer: myAnalyzer instance
    :param from_date: start date of simulation
    :param to_date: end date of simulation
    '''

    file_name = info['Estrategia']
    data_name = info['Mercado']
    from_date = info['Fecha inicial']
    to_date = info['Fecha final']

    pdf = FPDF(unit='in')
    effective_page_width = pdf.w - 2*pdf.l_margin
    sep = effective_page_width/4.0
    section_size = 12
    font_family = 'Helvetica'

    pdf.add_page()
    pdf.set_font(font_family, style='B', size=20)

    pdf.set_line_width(0.02)
    #pdf.set_draw_color(0,75,126)
    #pdf.set_draw_color(200,10,10)
    pdf.line(0.4, 0.5, 7.8, 0.5)
    pdf.line(0.4, 1.4, 7.8, 1.4)
    pdf.line(0.4, 11.2, 7.8, 11.2)

    margin = sep
    line_sep = 0.2
    pdf.ln(0.6)
    pdf.cell(margin, 0, txt="Informe de la simulación")
    pdf.ln(0.6)

    # Print simulation info
    print_section(pdf, "Datos de la simulación", font_family, section_size, margin)
    print_dict(pdf, info, margin, line_sep)

    # Print more information about simulation
    if len(params) > 0:
        print_section(pdf, "Más información", font_family, section_size, margin)
        print_dict(pdf, params, margin, line_sep)

    if training_params != None:
        print_section(pdf, "Parámetros del entrenamiento", font_family, section_size, margin)
        print_dict(pdf, training_params, margin, line_sep)

    # Print simulation metrics
    print_section(pdf, "Resultados", font_family, section_size, margin)
    print_dict(pdf, metrics, margin, line_sep)

    print_section(pdf, "Simulación", font_family, section_size, margin)

    # Image with 800x500 pixels (8,5)
    image_path = execution_plot.plot_simulation(cerebro, file_name, data_name, from_date, to_date,
                                                size=(10,6), style='line')

    # PDF path
    pdf_path = './reports/' + data_name + '_' + file_name + '_' + from_date + '_' + to_date + '.pdf'

    pdf.image(image_path, x=0.0, y=pdf.get_y(), w=8.0)
    os.remove(image_path)


    create_folder_if_not_exists('./reports')
    pdf.output(pdf_path)
    webbrowser.open_new_tab(pdf_path)