import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as tick import matplotlib.markers as marker import matplotlib.axes as axes from matplotlib.ticker import FormatStrFormatter from src.util.results2folder import makefolder_name ############################################################################### # maximum depth of search ############################################################################### folder_load = os.path.join("results", "maxdepth_results", "summary.csv") folder_save = "maxdepth_plot" folder_path = makefolder_name(folder_save) df = pd.read_csv(folder_load, index_col=False) datasetsnames = np.unique(df.datasetname) results2plot = dict() for datname in datasetsnames: results2plot[datname] = dict() results2plot[datname]["maxdepth"] = df[df.datasetname == datname].maxdepth.to_numpy() results2plot[datname]["compression"] = df[df.datasetname == datname].length_ratio.to_numpy() results2plot[datname]["time"] = df[df.datasetname == datname].runtime.to_numpy() results2plot[datname]["conditions"] = df[df.datasetname == datname].avg_items.to_numpy()
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as tick import matplotlib.markers as marker import matplotlib.axes as axes from matplotlib.ticker import FormatStrFormatter from src.util.results2folder import makefolder_name ############################################################################### # runtime plot ############################################################################### name_save = "plot_runtime" algorithms = ["SSDpp", "seqcover", "topk"] folder_path = makefolder_name(name_save) variable = "runtime" s = 50 alp = 0.7 fig = plt.figure() ax = plt.gca() list_markers = ['s', 'D', 'v', '^', '<', "o", '>'] # load data results = dict() for ialg, alg in enumerate(algorithms): folder_load = os.path.join("results", alg, "summary.csv") results[alg] = pd.read_csv(folder_load, index_col=False) labelstotal = results["SSDpp"].datasetname.to_numpy() #ax.axvline(10.5,linewidth =1,linestyle="-.", color =(0,0,0)) for ialg, alg in enumerate(algorithms):
"dee": 8, "ele-1": 9, "forestFires": 23, "concrete": 19, "treasury": 31, "wizmir": 22, "abalone": 25, "puma32h": 42, "ailerons": 197, "elevators": 160, "bikesharing": 127, "california": 163, "house": 280 } savefile = makefolder_name(algorithmname) savefile = savefile + "/summary.csv" #savefile = "./results/"+algorithmname+"a_summary.txt" print( "datasetname,kl_supp,avg_supp,wkl_supp,kl_usg,avg_usg,wkl_usg,wacc_supp,wacc_usg,wkl_sum,jacc_avg,n_rules,avg_items,nrows_train,std_rules,top1_std,runtime,", file=open(savefile, "w")) testpercentage = 0.2 beam_width = 100 depthmax = 5 topkalgorithm = 2000 for datasetname in datasetnames: print("dataset name : " + str(datasetname)) file_data = filedatasets + datasetname + ".csv" df = pd.read_csv(file_data, sep=delimiter) df.rename(columns={df.columns[-1]: "class"}, inplace=True) dfaux = df