コード例 #1
0
def main():
    # Load dataset
    data = datasets.load_iris()
    x = data.data
    y = data.target
    x_train, y_train, x_test, y_test = dataset.split_train_test_dataset(
        x, y, split_size=0.6, shuffle=True)

    # ClassificationDecisionTree
    tree = ClassificationDecisionTree()
    tree.train(x_train, y_train)
    pruned_tree = tree.prune()
    y_pred = tree.predict(x_test)
    y_pred_pruned = pruned_tree.predict(x_test)
    print("Classification result: {}".format(
        evaluation.accuracy(y_pred, y_test)))
    print("Classification result pruned: {}".format(
        evaluation.accuracy(y_pred_pruned, y_test)))

    # Sklearn tree
    clf = sktree.DecisionTreeClassifier()
    clf = clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print("Scikit-learn classification result: {}".format(
        evaluation.accuracy(y_pred, y_test)))
コード例 #2
0
 def test_accuracy(self):
     # 100% accuracy
     y_pred = np.asarray([1, 0, 0, 0, 1, 1, 0, 1])
     y_true = np.asarray([1, 0, 0, 0, 1, 1, 0, 1])
     self.assertEqual(evaluation.accuracy(y_pred, y_true), 1)
     # 50% accuracy
     y_pred = np.asarray([1, 0, 0, 0, 1, 1, 0, 1])
     y_true = np.asarray([1, 0, 1, 0, 0, 1, 1, 0])
     self.assertEqual(evaluation.accuracy(y_pred, y_true), 0.5)
     # 0% accurancy
     y_pred = np.asarray([1, 0, 0, 0, 1, 1, 0, 1])
     y_true = np.asarray([0, 1, 1, 1, 0, 0, 1, 0])
     self.assertEqual(evaluation.accuracy(y_pred, y_true), 0)
コード例 #3
0
def main():
    # Load dataset
    data = datasets.load_digits()
    x = data.data
    y = data.target
    x_train, y_train, x_test, y_test = dataset.split_train_test_dataset(x, y, split_size=0.6, shuffle=True)

    # GaussianNaiveBayes
    cls = GaussianNaiveBayes()
    cls.train(x_train, y_train)
    y_pred = cls.predict(x_test)
    print("Classification result: {}".format(evaluation.accuracy(y_pred, y_test)))

    # Scikit-learn GaussianNaiveBayes
    cls = skbayes.GaussianNB()
    y_pred = cls.fit(x_train, y_train).predict(x_test)
    print("Scikit-learn classification result: {}".format(evaluation.accuracy(y_pred, y_test)))
コード例 #4
0
def main():
    # Load dataset, from http://scikit-learn.org/stable/modules/tree.html#regression
    x_train = [[0., 0.], [2., 2.]]
    y_train = [0.5, 2.5]
    x_test = [[1., 1.]]
    y_test = [0.5]

    # RegressionDecisionTree
    tree = RegressionDecisionTree(minimum_sample_count=1)
    tree.train(x_train, y_train)
    y_pred = tree.predict(x_test)
    print("Regression result: {}".format(evaluation.accuracy(y_pred, y_test)))

    # Sklearn tree
    clf = sktree.DecisionTreeRegressor()
    clf = clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print("Scikit-learn Regression result: {}".format(
        evaluation.accuracy(y_pred, y_test)))
コード例 #5
0
def main():
    # Load dataset
    data = datasets.load_iris()
    x = data.data
    y = data.target
    x_train, y_train, x_test, y_test = dataset.split_train_test_dataset(
        x, y, split_size=0.6, shuffle=True)

    clf = KNearestNeighbors()
    y_pred = clf.predict(x_train, y_train, x_test)
    print("Classification result: {}".format(
        evaluation.accuracy(y_pred, y_test)))

    # Sklearn KNeighborsClassifier
    clf = skneighbors.KNeighborsClassifier(n_neighbors=2)
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print("Scikit-learn classification result: {}".format(
        evaluation.accuracy(y_pred, y_test)))
コード例 #6
0
def validate(val_loader, model, criterion, num_classes, debug=False, flip=True):
	batch_time = AverageMeter()
	data_time = AverageMeter()
	losses = AverageMeter()
	acces = AverageMeter()
	distes = AverageMeter()

	# predictions
	predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

	# switch to evaluate mode
	model.eval()

	gt_win, pred_win = None, None
	end = time.time()
	bar = Bar('Processing', max=len(val_loader))
	for i, (inputs, target) in enumerate(val_loader):
		# measure data loading time
		data_time.update(time.time() - end)

		target = target.cuda(async=True)
		with torch.no_grad():
			input_var = torch.autograd.Variable(inputs.cuda())
			target_var = torch.autograd.Variable(target)

		# compute output
		output = model(input_var)
		score_map = output[-1].data.cpu()
		if flip:
			flip_input_var = torch.autograd.Variable(
					torch.from_numpy(fliplr(inputs.clone().numpy())).float().cuda(), 
					volatile=True
				)
			flip_output_var = model(flip_input_var)
			flip_output = flip_back(flip_output_var[-1].data.cpu())
			score_map += flip_output


		loss = 0
		for o in output:
			loss += criterion(o[:,:21,:,:], target_var)
		acc, dist = accuracy(score_map[:,:21,:,:].contiguous(), target.cpu(), idx)

		# generate predictions		
		# preds = final_preds(score_map, meta['center'], meta['scale'], [64, 64])
		preds = score_map
		# for n in range(score_map.size(0)):
		# 	predictions[meta['index'][n], :, :] = preds[n, :, :]
		# print(debug)
		if debug:
			gt_batch_img = batch_with_heatmap(inputs, target)
			pred_batch_img = batch_with_heatmap(inputs, score_map)

			sz = tuple([x * 4 for x in gt_batch_img[:,:,0].shape])
			gt_batch_img = cv2.resize(gt_batch_img,(sz[1],sz[0]),)
			pred_batch_img = cv2.resize(pred_batch_img, (sz[1],sz[0]))

			if not gt_win or not pred_win:
				# plt.imshow(gt_batch_img)
				plt.subplot(121)
				gt_win = plt.imshow(gt_batch_img[:,:,::-1])
				plt.subplot(122)
				pred_win = plt.imshow(pred_batch_img[:,:,::-1])
			else:
				gt_win.set_data(gt_batch_img)
				pred_win.set_data(pred_batch_img)

			plt.savefig("./tmp/" + str(i) + ".png", dpi = 1000, bbox_inches='tight')

		# measure accuracy and record loss
		losses.update(loss.item(), inputs.size(0))
		acces.update(acc[0], inputs.size(0))
		distes.update(dist[0], inputs.size(0))

		# measure elapsed time
		batch_time.update(time.time() - end)
		end = time.time()

		# plot progress
		bar.suffix  = '({batch}/{size}) Data: {data:.1f}s | Batch: {bt:.1f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f} | Dist {dist:.3f}'.format(
					batch=i + 1,
					size=len(val_loader),
					data=data_time.val,
					bt=batch_time.avg,
					total=bar.elapsed_td,
					eta=bar.eta_td,
					loss=losses.avg,
					acc=acces.avg,
					dist=distes.avg
					)
		bar.next()

	bar.finish()
	return losses.avg, acces.avg, predictions
コード例 #7
0
def train(train_loader, model, criterion, optimizer, debug=False, flip=True):
	batch_time = AverageMeter()
	data_time = AverageMeter()
	losses = AverageMeter()
	acces = AverageMeter()
	distes = AverageMeter()

	# switch to train mode
	model.train()

	end = time.time()

	gt_win, pred_win = None, None
	bar = Bar('Processing', max=len(train_loader))
	for i, (inputs, target) in enumerate(train_loader):
		# measure data loading time
		data_time.update(time.time() - end)

		input_var = torch.autograd.Variable(inputs.cuda())
		target_var = torch.autograd.Variable(target.cuda(async=True))

		# compute output
		output = model(input_var)
		score_map = output[-1].data.cpu()
		loss = criterion(output[0], target_var)
		for j in range(1, len(output)):
			loss += criterion(output[j], target_var)
		acc, dist = accuracy(score_map, target, idx)
		if debug: # visualize groundtruth and predictions
			gt_batch_img = batch_with_heatmap(inputs, target)
			pred_batch_img = batch_with_heatmap(inputs, score_map)
			if not gt_win or not pred_win:
				ax1 = plt.subplot(121)
				ax1.title.set_text('Groundtruth')
				gt_win = plt.imshow(gt_batch_img[:,:,::-1])
				ax2 = plt.subplot(122)
				ax2.title.set_text('Prediction')
				pred_win = plt.imshow(pred_batch_img[:,:,::-1])
			else:
				gt_win.set_data(gt_batch_img)
				pred_win.set_data(pred_batch_img)
			plt.plot()
			plt.pause(.5)
			

		# measure accuracy and record loss
		losses.update(loss.item(), inputs.size(0))
		acces.update(acc[0], inputs.size(0))
		distes.update(dist[0], inputs.size(0))

		# compute gradient and do SGD step
		optimizer.zero_grad()
		loss.backward()
		optimizer.step()

		# measure elapsed time
		batch_time.update(time.time() - end)
		end = time.time()

		# plot progress
		bar.suffix  = '({batch}/{size}) Data: {data:.1f}s | Batch: {bt:.1f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f} | Dist {dist:.3f}'.format(
					batch=i + 1,
					size=len(train_loader),
					data=data_time.val,
					bt=batch_time.avg,
					total=bar.elapsed_td,
					eta=bar.eta_td,
					loss=losses.avg,
					acc=acces.avg,
					dist=distes.avg
					)
		bar.next()

	bar.finish()
	return losses.avg, acces.avg