コード例 #1
0
    def test_define_features_tfidf(self):
        """ Test Case for Feature Defintion using Tfidf"""

        training_data, testing_data, training_y, testing_y = split_data(
            self.df_concatenated, 'text', 'hate_speech', 0.25)

        vectorizer, training_features, testing_features = define_features_tfidf(
            "text", training_data, testing_data)
        vec2, training_features2, testing_features2 = define_features_tfidf(
            "text", self.test_set)
        """ Test correct data types """

        self.assertIsInstance(vectorizer,
                              sklearn.feature_extraction.text.TfidfVectorizer)

        self.assertIsInstance(training_features, scipy.sparse.csr.csr_matrix)

        self.assertIsInstance(testing_features, scipy.sparse.csr.csr_matrix)
        """ Test  None case """

        self.assertIsInstance(vec2,
                              sklearn.feature_extraction.text.TfidfVectorizer)

        self.assertIsInstance(training_features2, scipy.sparse.csr.csr_matrix)

        self.assertIsNone(testing_features2)
コード例 #2
0
    def test_define_features_vectorizer(self):
        """ Test Case for Feature Defintion using CountVectorizer"""

        training_data, testing_data, training_y, testing_y = split_data(
            self.df_concatenated, 'text', 'hate_speech', 0.25)

        vectorizer, training_features, testing_features = define_features_vectorizer(
            "text", training_data, testing_data)
        vec2, training_features2, testing_features2 = define_features_vectorizer(
            "text", self.test_set)
        """ Test correct data types """

        self.assertIsInstance(vectorizer,
                              sklearn.feature_extraction.text.CountVectorizer)

        self.assertIsInstance(training_features, scipy.sparse.csr.csr_matrix)

        self.assertIsInstance(testing_features, scipy.sparse.csr.csr_matrix)
        """ Test  None case """

        self.assertIsInstance(vec2,
                              sklearn.feature_extraction.text.CountVectorizer)

        self.assertIsInstance(training_features2, scipy.sparse.csr.csr_matrix)

        self.assertIsNone(testing_features2)

        self.assertTrue(
            (training_features2.toarray() == self.test_result_count).all())
    def setUp(self):
        self.df = load_data(
            os.path.join(os.path.pardir, 'src', 'data', 'tweets.csv'))
        self.df2, self.df3 = get_datasets(
            os.path.join(os.path.pardir, 'src', 'data', 'labeled_data.csv'),
            os.path.join(os.path.pardir, 'src', 'data',
                         'hatespeech_text_label_vote_RESTRICTED_100K.csv'))
        self.df_concatenated = concatenate_datasets(
            os.path.join(os.path.pardir, 'src', 'data', 'tweets.csv'),
            self.df2, self.df3)

        self.training_data, self.testing_data, self.training_y, self.testing_y = split_data(
            self.df_concatenated, 'text', 'hate_speech', 0.25)