コード例 #1
0
def check_shape(shape, fun):
    y_true = rnd.choice([0, 1], size=shape, p=[2. / 3, 1. / 3])
    y_pred = rnd.uniform(0, 1, shape)
    fun_np = getattr(sys.modules[__name__], fun.__name__ + '_np')
    res_np = fun_np(y_true, y_pred)
    res_k = K.eval(fun(K.variable(y_true), K.variable(y_pred)))

    print(res_k, res_np)
    assert res_k.shape == res_np.shape
    assert np.isclose(res_k, res_np)
    print('pEER: %.3f' % mtr.eer(y_true.flatten(), y_pred.flatten()))
コード例 #2
0
    def validate_model(model, batch_gen, metrics):
        """
        # Arguments
            model: Keras model
            data: BaseDataLoader
            metrics: list of metrics
        # Output
            dictionary with values of metrics and loss
        """
        cut_model = model
        if DCASEModelTrainer.is_mfom_objective(model):
            input = model.get_layer(name='input').output
            preact = model.get_layer(name='output').output
            cut_model = Model(input=input, output=preact)

        n_class = cut_model.output_shape[1]
        y_true, y_pred = np.empty((0, n_class)), np.empty((0, n_class))
        loss, cnt = 0, 0

        for X_b, Y_b in batch_gen.batch():
            ps = cut_model.predict_on_batch(X_b)
            y_pred = np.vstack([y_pred, ps])
            y_true = np.vstack([y_true, Y_b])
            # NOTE: it is fake loss, caz Y is fed
            if DCASEModelTrainer.is_mfom_objective(model):
                X_b = [Y_b, X_b]
            l = model.test_on_batch(X_b, Y_b)
            loss += l
            cnt += 1

        vals = {'val_loss': loss / cnt}

        for m in metrics:
            if m == 'micro_f1':
                p = mtx.step(y_pred, threshold=0.5)
                vals[m] = mtx.micro_f1(y_true, p)
            elif m == 'pooled_eer':
                p = y_pred.flatten()
                y = y_true.flatten()
                vals[m] = mtx.eer(y, p)
            elif m == 'class_wise_eer':
                vals[m] = np.mean(mtx.class_wise_eer(y_true, y_pred))
            elif m == 'accuracy':
                p = np.argmax(y_pred, axis=-1)
                y = np.argmax(y_true, axis=-1)
                vals[m] = mtx.pooled_accuracy(y, p)
            else:
                raise KeyError(
                    '[ERROR] Such a metric is not implemented: %s...' % m)
        return vals
コード例 #3
0
    # train
    all_X, all_Y = [], []
    for i in range(10000 // time_step):
        X, Y = generate_dataset(output_dim=nclass, num_examples=time_step)
        all_X.append(X.T)
        all_Y.append(Y)
    all_X, all_Y = np.array(all_X), np.array(all_Y)
    hist = model.fit([all_Y, all_X], all_Y, nb_epoch=200, batch_size=5)

    # calc EER: we cut MFoM head, up to sigmoid output
    input = model.get_layer(name='main_input').output
    out = model.get_layer(name='output').output
    cut_model = Model(input=input, output=out)
    y_pred_sig = cut_model.predict(all_X)
    eer_val = MT.eer(all_Y.flatten(), y_pred_sig.flatten())
    print('sigma_EER: %.4f' % eer_val)

    y_pred = model.predict([all_Y, all_X])
    eer_val = MT.eer(all_Y.flatten(), 1. - y_pred.flatten())
    print('l_EER: %.4f' % eer_val)
    print(model.evaluate([all_Y, all_X], all_Y))

    # TODO notice from the experiments:
    # when we minimize obj.mfom_microf1 with psi = y_pred or psi = -y_pred + 0.5 in
    # UvZMisclassification() layer, the smoothF1 is minimized !!! but EER is not at all.
    # When we minimize obj.mfom_microf1 with psi = -y_pred + y_neg * unit_avg + y_true * zeros_avg,
    # then both smoothF1 and EER are minimized :)

    # history plot, alpha and beta params
    m = model.get_layer('smooth_error_counter')
コード例 #4
0
    nclass = 10

    # mfom model
    model = mfom_model(dim, nclass)
    model.compile(loss=obj.mfom_eer_normalized, optimizer='Adam')
    model.summary()

    # training on multi-label dataset
    x_train, x_test, y_train, y_test = generate_dataset(n_smp=10000,
                                                        n_feat=dim,
                                                        n_cls=nclass)
    mask = y_train.sum(axis=-1) != nclass
    y_train = y_train[mask]
    x_train = x_train[mask]
    hist = model.fit([y_train, x_train], y_train, nb_epoch=10, batch_size=16)

    # cut MFoM head
    cut_model = cut_mfom(model)
    y_pred = cut_model.predict(x_test)

    # evaluate
    eer_val = MT.eer(y_true=y_test.flatten(), y_pred=y_pred.flatten())
    print('EER: %.4f' % eer_val)

    # history plot, alpha and beta params of MFoM
    m = model.get_layer('smooth_error_counter')
    print('alpha: ', K.get_value(m.alpha))
    print('beta: ', K.get_value(m.beta))
    plt.plot(hist.history['loss'])
    plt.show()
コード例 #5
0
    def validate_model(model, batch_gen, metrics, attrib_cls=None):
        """
        # Arguments
            model: Keras model
            data: BaseDataLoader
            metrics: list of metrics
        # Output
            dictionary with values of metrics and loss
        """
        cut_model = model
        if OGITSModelTrainer.is_mfom_objective(model):
            input = model.get_layer(name='input').output
            preact = model.get_layer(name='output').output
            cut_model = Model(input=input, output=preact)

        n_class = cut_model.output_shape[-1]
        _, bnd, wnd, ch = batch_gen.batch_shape()
        y_true, y_pred = np.empty((0, wnd, n_class)), np.empty(
            (0, wnd, n_class))

        loss, cnt = 0, 0
        for fn, X_b, Y_b in batch_gen.batch():
            ps = cut_model.predict_on_batch(X_b)
            y_pred = np.vstack([y_pred, ps])
            y_true = np.vstack([y_true, Y_b])
            # NOTE: it is approximated loss, caz Y is fed
            if OGITSModelTrainer.is_mfom_objective(model):
                X_b = [Y_b, X_b]
            l = model.test_on_batch(X_b, Y_b)
            loss += l
            cnt += 1
        vals = {'val_loss': loss / cnt}
        y_true = y_true.reshape((-1, n_class))
        y_pred = y_pred.reshape((-1, n_class))

        if attrib_cls == 'fusion':
            fmanner_ids = [2, 4, 9, 11, 12, 14, 15]
            y_true_m = y_true[:, fmanner_ids]
            y_pred_m = y_pred[:, fmanner_ids]

            v_max, t_max = 0, 0
            for t in [0.5]:  # np.linspace(0.2, 0.7, 50):
                p = mtx.step(y_pred_m, threshold=t)
                v = mtx.micro_f1(y_true_m, p)
                if v_max < v:
                    v_max = v
                    t_max = t
            print('F1 fusion-manner:', v_max, t_max)
            eer = np.mean(mtx.class_wise_eer(y_true_m, y_pred_m))
            print('EER fusion-manner:', eer)

            fplace_ids = [0, 1, 3, 5, 6, 7, 8, 10, 11, 13]
            y_true_p = y_true[:, fplace_ids]
            y_pred_p = y_pred[:, fplace_ids]

            v_max, t_max = 0, 0
            for t in [0.5]:  # np.linspace(0.2, 0.7, 50):
                p = mtx.step(y_pred_p, threshold=t)
                v = mtx.micro_f1(y_true_p, p)
                if v_max < v:
                    v_max = v
                    t_max = t
            print('F1 fusion-place:', v_max, t_max)
            eer = np.mean(mtx.class_wise_eer(y_true_p, y_pred_p))
            print('EER fusion-place:', eer)

        for m in metrics:
            if m == 'micro_f1':
                v_max, t_max = 0, 0
                for t in [0.5]:  # np.linspace(0.2, 0.7, 50):
                    p = mtx.step(y_pred, threshold=t)
                    v = mtx.micro_f1(y_true, p)
                    if v_max < v:
                        v_max = v
                        t_max = t
                vals[m] = v_max
                print('Optimal threshold: ', vals[m], t_max)
            elif m == 'pooled_eer':
                p = y_pred.flatten()
                y = y_true.flatten()
                vals[m] = mtx.eer(y, p)
            elif m == 'class_wise_eer':
                vals[m] = np.mean(mtx.class_wise_eer(y_true, y_pred))
            elif m == 'accuracy':
                p = np.argmax(y_pred, axis=-1)
                y = np.argmax(y_true, axis=-1)
                vals[m] = mtx.pooled_accuracy(y, p)
            else:
                raise KeyError(
                    '[ERROR] Such a metric is not implemented: %s...' % m)
        return vals