コード例 #1
0
def train_model_CV():

    model_params = {
        'c_in': 1,
        'c_out': 1,
        'depth': 30,
        'width': 1,
        'dilations': [1, 2, 4, 8, 16],
        'loss': 'L2'
    }
    batch_size = 32

    transforms = TransformList([RandomHFlip()])

    target_ims, input_ims = utils.load_phantom_ds(
        folder_path='PhantomsRadialNoisy/')
    cv_split_generator = utils.split_data_CV(input_ims,
                                             target_ims,
                                             frac=(1 / 7, 2 / 7))

    for i, (_, val_set, train_set) in enumerate(cv_split_generator):
        if i % 2 or i // 2 not in [0, 1, 2]: continue

        model = MSDRegressionModel(**model_params)

        train_ds = MultiOrbitDataset(*train_set,
                                     device='cuda',
                                     transforms=transforms)
        train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
        val_ds = MultiOrbitDataset(*val_set, device='cuda')
        val_dl = DataLoader(val_ds,
                            batch_size=batch_size,
                            sampler=ValSampler(len(val_ds)))

        train_params = {
            'epochs': 100,
            'lr': 2e-3,
            'regularization': None,
            'cutoff_epoch': 1
        }
        if MODEL_NAME is not None:
            train_params[
                'save_folder'] = f"model_weights/{MODEL_NAME}_CV{i+1:0>2d}_{datetime.now().strftime('%m%d%H%M%S')}"

        model.set_normalization(
            DataLoader(train_ds,
                       batch_size=100,
                       sampler=ValSampler(len(train_ds),
                                          min(len(train_ds), 5000))))
        train(model, (train_dl, val_dl), nn.MSELoss(), **train_params)
コード例 #2
0
def eval_metrics_CV():
    """Computes metrics over different inits with cross validation, creates box plots usefull to check generalization/robustness"""

    target_ims, input_ims = utils.load_phantom_ds(folder_path='PhantomsRadialNoisy/')
    # target_ims, input_ims = utils.load_walnut_ds()

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))  

    models_dir = Path('/media/beta/florian/model_weights')
    metrics = ['SSIM', 'DSC', 'PSNR']

    models, model_names = get_models()
    [model.set_normalization(norm_dl) for model in models]

    print(eval_init_metrics(metrics, ds))
    metrics_te = []
    for cv in ['01', '03', '05']:
        # if not cv == '01': continue
        task = 'meanVarInit' 

        [model.msd.load_state_dict(
            torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
        for model, d in zip(models[:2], [30, 80])]

        [model.msd.load_state_dict(
            torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
        for model, f in zip(models[-4:], [8, 16, 32, 64])] 

        metrics_te.append(eval_metrics(models, metrics, ds, 50))

    plot_metrics_CV(metrics_te, model_names, metrics, ref_metrics=eval_init_metrics(metrics, ds), filename=f'metrics_P_CV{cv}_best.png')
コード例 #3
0
def train_model():

    model_params = {
        'c_in': 1,
        'c_out': 1,
        'depth': 30,
        'width': 1,
        'dilations': [1, 2, 4, 8, 16],
        'loss': 'L2'
    }
    batch_size = 32

    model = MSDRegressionModel(**model_params)
    # model= UNetRegressionModel(**model_params)

    target_ims, input_ims = utils.load_phantom_ds('PhantomsRadialNoisy/')
    test_set, val_set, train_set = split_data(input_ims, target_ims, 1 / 7)

    train_ds = MultiOrbitDataset(*train_set,
                                 device='cuda',
                                 transforms=RandomHFlip())
    train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
    val_ds = MultiOrbitDataset(*val_set, device='cuda')
    val_dl = DataLoader(val_ds,
                        batch_size=batch_size,
                        sampler=ValSampler(len(val_ds)))

    train_params = {
        'epochs': 30,
        'lr': 2e-3,
        'regularization': None,
        'cutoff_epoch': 5
    }
    if MODEL_NAME is not None:
        train_params[
            'save_folder'] = f"model_weights/{MODEL_NAME}_{datetime.now().strftime('%m%d%H%M%S')}"

    model.set_normalization(
        DataLoader(train_ds,
                   batch_size=100,
                   sampler=ValSampler(len(train_ds), min(len(train_ds),
                                                         5000))))
    train(model, (train_dl, val_dl), nn.MSELoss(), **train_params)
コード例 #4
0
def svcca_over_training():
    """Evolution of SVCCA similarity matrix over training"""

    target_ims, input_ims = utils.load_phantom_ds('PhantomsRadialNoisy')

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False, vert_sym=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))

    patches = get_patches(ds, 50) 

    for width in [80]:

        model_params = {'c_in': 1, 'c_out': 1, 'width': 1, 'depth': width, 'dilations': [1,2,4,8,16]}            

        fig, axes = plt.subplots(1,4, figsize=(22,5))

        ref_model, comp_model = MSDRegressionModel(**model_params), MSDRegressionModel(**model_params)
        ref_model.set_normalization(norm_dl)
        comp_model.set_normalization(norm_dl)

        init_state_dict = torch.load(sorted(models_dir.glob(f'MSD_baseline/MSD_d{width}_W_CV01_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu')
        first_state_dict = torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{width}_P_scratch_CV01_*/model_*.h5'), key=_nat_sort)[0], map_location='cpu')
        best_state_dict = torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{width}_P_scratch_CV01_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu')
        last_state_dict = torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{width}_P_scratch_CV01_*/model_*.h5'), key=_nat_sort)[-1], map_location='cpu')

        ref_model.msd.load_state_dict(best_state_dict)

        for i, state_dict in enumerate([init_state_dict, first_state_dict, best_state_dict, last_state_dict]):

            comp_model.msd.load_state_dict(state_dict)
            if i == 0:
                # shuffle_weights(comp_model.msd)
                pass

            # reps = get_model_representation([ref_model, comp_model], patches, 
            #                                 [get_unet_layers(ref_model), get_unet_layers(comp_model)], sample_rate=10)

            reps = get_model_representation([ref_model, comp_model], patches, 
                                            [range(1,81), range(1,81)], sample_rate=10)
        
            mat = axes[i].matshow(get_svcca_matrix(*reps), vmin=.2, vmax=1)
            if i == 0: axes[i].set_ylabel('BEST')
            axes[i].set_xlabel(['INIT', 'FIRST', 'BEST', 'LAST'][i])
            axes[i].set_title(['(a)', '(b)', '(c)', '(d)'][i], loc='left')

        # axes[0].set_yticks(rang)
        for ax in axes:
            ax.set_xticks([])
            ax.yaxis.tick_right()
            # ax.set_yticks(range(9))
            # ax.set_yticklabels(unet_layers)

        cax = fig.add_axes([.931, 0.1, .02, 0.8])
        plt.colorbar(mat, cax=cax)
        plt.savefig(f'outputs/svcca_training_MSD_d{width}_transfer_CV01.png', bbox_inches='tight')
コード例 #5
0
def eval_metrics_samples():
    """Evaluates models for different training setups, here with changing amounts of training samples"""

    global colors

    target_ims, input_ims = utils.load_phantom_ds(folder_path='PhantomsRadialNoisy/')
    # target_ims, input_ims = utils.load_walnut_ds()

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))  

    models_dir = Path('/media/beta/florian/model_weights')
    metrics = ['SSIM', 'DSC', 'PSNR']

    models, model_names = get_models()
    [model.set_normalization(norm_dl) for model in models]
    
    for cv in ['01', '03', '05']:
        metrics_samples = []
        for n_samples in [16, 128, 1024]:
            task = '_shuffle'

            [model.msd.load_state_dict(
                torch.load(sorted(models_dir.glob(f'models_Pn_CV{cv}/MSD_d{d}_Pn{n_samples}{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
            for model, d in zip(models[:2], [30, 80])]

            [model.msd.load_state_dict(
                torch.load(sorted(models_dir.glob(f'models_Pn_CV{cv}/UNet_f{f}_Pn{n_samples}{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
            for model, f in zip(models[-4:], [8, 16, 32, 64])]  

            metrics_samples.append(eval_metrics(models, metrics, ds))

        task = 'shuffle'
        [model.msd.load_state_dict(
            torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
        for model, d in zip(models[:2], [30, 80])]

        [model.msd.load_state_dict(
            torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
        for model, f in zip(models[-4:], [8, 16, 32, 64])] 

        metrics_samples.append(eval_metrics(models, metrics, ds))

        
        fig, axes = plt.subplots(1, len(metrics), figsize=(len(metrics) *10,10))
        cmap = cm.get_cmap('coolwarm', 4)(range(4))

        box_plot_handles = [None for _ in range(len(metrics_samples))]
        for j in range(len(metrics_samples)):
            for i, name in enumerate(metrics):                
                if i == 1:
                    box_plot_handles[j] = axes[i].boxplot(metrics_samples[j][:, i].T, positions=np.array([0,1, 3,4,5,6])-.21+ j*.14, widths=.1,
                                                        boxprops={'color': cmap[j], 'linewidth': 2}, whiskerprops={'color': cmap[j], 'linewidth': 2},
                                                        capprops={'color': cmap[j], 'linewidth': 2}, medianprops={'color': 'k'},
                                                        showfliers=False)["boxes"][0]
                else:
                    axes[i].boxplot(metrics_samples[j][:, i].T, positions=np.array([0,1, 3,4,5,6])+(j-1)*.15, widths=.1,
                                    boxprops={'color': cmap[j], 'linewidth': 2}, whiskerprops={'color': cmap[j], 'linewidth': 2},
                                    capprops={'color': cmap[j], 'linewidth': 2}, medianprops={'color': 'k'},
                                    showfliers=False)

        metrics_samples = np.array(metrics_samples)
        for i, ax in enumerate(axes):
            for j in range(metrics_samples.shape[1]):
                # print(np.median(metrics_samples[:,j,i], -1))
                ax.plot(np.array([-.21,-.07,.07,.21]) +np.array([0,1, 3,4,5,6])[j] +.05, np.median(metrics_samples[:,j,i], -1), '-k', linewidth=.7, alpha=.7)

        ref_metrics = eval_init_metrics(metrics, ds)
        for i, name in enumerate(metrics):
            axes[i].plot([-.5, len(model_names)+.5], (ref_metrics[i],) *2, '--k', linewidth=4, alpha=.5)
            axes[i].set_title(name)
            axes[i].set_xticks(np.array([0,1, 3,4,5,6]))
            axes[i].set_xticklabels(model_names, rotation=30)

        axes[1].legend(box_plot_handles, ['16', '128', '1024', f'{4*709}    '], loc='lower right')
        plt.savefig(Path('outputs/') / f'metrics_P_CV{cv}_samples_shuffle_best.png')
コード例 #6
0
def eval_metrics_mat():
    """Plots result of all metrics wrt to different init setups as a matrix"""    

    target_ims, input_ims = utils.load_phantom_ds(folder_path='PhantomsRadialNoisy/')

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))  

    models_dir = Path('/media/beta/florian/model_weights')
    metrics = ['SSIM', 'DSC', 'PSNR']

    models, model_names = get_models()
    [model.set_normalization(norm_dl) for model in models]

    metrics_mat, metrics_std_te = np.zeros((15,6)), np.zeros((15,6))

    fig, ax = plt.subplots(figsize=(5*6,5))
    tasks = ['scratch', 'transfer', 'shuffle', 'mean-var']

    ref_metrics = [0.7825,  0.965, 33.1472258 ]
    print(ref_metrics)

    for i, task in enumerate(['scratch', 'transfer_CV01', 'shuffle', 'meanVarInit']):
        metrics_te = []
        for cv in ['01', '03', '05']:

            [model.msd.load_state_dict(
                torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
            for model, d in zip(models[:2], [30, 80])]

            [model.msd.load_state_dict(
                torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
            for model, f in zip(models[-4:], [8, 16, 32, 64])] 

            metrics_te.append(eval_metrics(models, metrics, ds, 50))
        
        metrics_te = np.array(metrics_te)
        for j in range(len(metrics)):
            if j == 2:
                metrics_mat[j*5+i+1] = metrics_te.mean((0,-1))[:,j] /38
                metrics_std_te[j*5+i+1] = metrics_te.std((0,-1))[:,j] /38
            else:
                metrics_mat[j*5+i+1] = metrics_te.mean((0,-1))[:,j]
                metrics_std_te[j*5+i+1] = metrics_te.std((0,-1))[:,j]


    metrics_mat[metrics_mat == 0] = np.nan
    metrics_std_te[metrics_mat == 0] = np.nan
    ax.matshow(metrics_mat, cmap='twilight', aspect=1/6, vmin=.64, vmax=1)

    current_cmap = cm.get_cmap()
    current_cmap.set_bad(color='white')

    for (i, j), z in np.ndenumerate(metrics_mat):
        if i % 5 == 0: continue
        if i < 10: 
            if z < ref_metrics[i//5]: 
                ax.text(j, i, f'{z:0.3f}', ha='center', va='center', c='red')
            else:
                if z >= metrics_mat[i//5*5+1:i//5*5+5,j].max(): 
                    ax.text(j, i, f'{z:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z > .92)], fontweight='bold')
                else: 
                    ax.text(j, i, f'{z:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z > .92)])
        else:
            if z >= metrics_mat[i//5*5+1:i//5*5+5,j].max(): 
                    ax.text(j, i, f'{z*38:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z*38 > 35)], fontweight='bold')
            else:
                ax.text(j, i, f'{z*38:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z*38 > 35)])


    ax.xaxis.tick_top()
    ax.set_xticks(range(6))
    fontproperties = {'weight' : 'bold', 'size' : 10}
    ax.set_xticklabels(model_names, fontproperties)

    ax.tick_params(axis='both', which='minor', labelsize=8)


    # ax.yaxis.set_major_locator(MultipleLocator(5))
    ax.yaxis.set_major_locator(FixedLocator([0,5,10]))
    ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'{metrics[pos]:<7s}'))
    # ax.set_yticklabels(ax.yaxis.get_majorticklabels(), fontdict={'weight' : 'bold', 'size' : 15})

    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.yaxis.set_minor_formatter(FuncFormatter(lambda x, pos: f'{tasks[pos%4-1]}'))
    # ax.yaxis.set_minor_formatter(FuncFormatter(lambda x, pos: print(pos)))
    plt.savefig('outputs/metrics_table.png', dpi=300, bbox_inches='tight')

    fig, ax = plt.subplots(figsize=(5*6,5))
    ax.matshow(metrics_mat, cmap='twilight', aspect=1/6, vmin=.64, vmax=1)

    current_cmap = cm.get_cmap()
    current_cmap.set_bad(color='white')

    for (i, j), z in np.ndenumerate(metrics_mat):
        if i % 5 == 0: continue
        if i < 10: 
            if z < ref_metrics[i//5]: 
                ax.text(j, i, f'{z:0.3f} -+ {metrics_std_te[i,j]:0.3f}', ha='center', va='center', c='red')
            else:
                if z >= metrics_mat[i//5*5+1:i//5*5+5,j].max(): 
                    ax.text(j, i, f'{z:0.3f} -+ {metrics_std_te[i,j]:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z > .92)], fontweight='bold')
                else: 
                    ax.text(j, i, f'{z:0.3f} -+ {metrics_std_te[i,j]:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z > .92)])
        else:
            if z >= metrics_mat[i//5*5+1:i//5*5+5,j].max(): 
                    ax.text(j, i, f'{z*38:0.3f} -+ {metrics_std_te[i,j]*38:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z*38 > 35)], fontweight='bold')
            else:
                ax.text(j, i, f'{z*38:0.3f} -+ {metrics_std_te[i,j]*38:0.3f}', ha='center', va='center', c=[(0,0,0,1), (1,1,1,1)][int(not z*38 > 35)])

    ax.xaxis.tick_top()
    ax.set_xticks(range(6))
    fontproperties = {'weight' : 'bold', 'size' : 10}
    ax.set_xticklabels(model_names, fontproperties)

    ax.tick_params(axis='both', which='minor', labelsize=8)


    # ax.yaxis.set_major_locator(MultipleLocator(5))
    ax.yaxis.set_major_locator(FixedLocator([0,5,10]))
    ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'{metrics[pos]:<7s}'))
    # ax.set_yticklabels(ax.yaxis.get_majorticklabels(), fontdict={'weight' : 'bold', 'size' : 15})

    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.yaxis.set_minor_formatter(FuncFormatter(lambda x, pos: f'{tasks[pos%4-1]}'))
    
    plt.savefig('outputs/metrics_table_std.png', dpi=300, bbox_inches='tight')
コード例 #7
0
def memory_generalization():
    """Generalization of models to the walnut dataset while training on the phatom one"""

    target_ims, input_ims = utils.load_phantom_ds(folder_path='PhantomsRadialNoisy/')
    # target_ims, input_ims = utils.load_walnut_ds()

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))  

    models_dir = Path('/media/beta/florian/model_weights')
    metrics = ['SSIM', 'DSC', 'PSNR']

    models, model_names = get_models()
    [model.set_normalization(norm_dl) for model in models]

    cv = '01'
    task = 'transfer_CV01'

    msd_cmap = cm.get_cmap('Purples', 4)(range(2,4,1))
    unet_cmap = cm.get_cmap('Oranges', 8)(range(4,8,1))
    cmap = np.concatenate([msd_cmap, unet_cmap], 0)


    metrics_phantoms = np.zeros((len(metrics), len(models), 4))

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_baseline/MSD_d{d}_W_CV01_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_baseline/UNet_f{f}_W_CV01_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_phantoms[...,0] = eval_metrics(models, metrics, ds, 4).mean(-1).T


    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_phantoms[...,1] = eval_metrics(models, metrics, ds, 4).mean(-1).T


    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_phantoms[...,2] = eval_metrics(models, metrics, ds, 4).mean(-1).T


    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[-1], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[-1], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_phantoms[...,3] = eval_metrics(models, metrics, ds, 4).mean(-1).T

    fig, axes = plt.subplots(1,3, figsize=(25,7.5))

    for i, ax in enumerate(axes):
        ax.fill_between(range(4), metrics_phantoms[i].min(0), metrics_phantoms[i].max(0), color='k', alpha=.2)
        # for j in range(metrics_phantoms.shape[1]):
        #     ax.plot(metrics_phantoms[i,j].mean(1), c=cmap[j], linestyle='dashed')

    models, model_names = get_models()
    target_ims, input_ims = utils.load_walnut_ds()

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))  
    [model.set_normalization(norm_dl) for model in models]

    ref_metrics = eval_init_metrics(metrics, ds)
    for i, (ax, ref) in enumerate(zip(axes, ref_metrics)):
        ax.plot([0, 3], (ref,) *2, c='k', alpha=.7, linestyle='dashed', linewidth=3)


    metrics_walnuts = np.zeros((len(metrics), len(models), 4))

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_baseline/MSD_d{d}_W_CV01_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_baseline/UNet_f{f}_W_CV01_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_walnuts[...,0] = eval_metrics(models, metrics, ds, 4).mean(-1).T


    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_walnuts[...,1] = eval_metrics(models, metrics, ds, 4).mean(-1).T


    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/best_*.h5'), key=_nat_sort)[0], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_walnuts[...,2] = eval_metrics(models, metrics, ds, 4).mean(-1).T


    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'MSD_phantoms/MSD_d{d}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[-1], map_location='cpu'))
    for model, d in zip(models[:2], [30, 80])]

    [model.msd.load_state_dict(
        torch.load(sorted(models_dir.glob(f'UNet_phantoms/UNet_f{f}_P_{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[-1], map_location='cpu'))
    for model, f in zip(models[-4:], [8, 16, 32, 64])] 

    metrics_walnuts[...,3] = eval_metrics(models, metrics, ds, 4).mean(-1).T
    
    for i, ax in enumerate(axes):
        for j in range(metrics_phantoms.shape[1]):
            if i == 1:
                ax.plot(metrics_walnuts[i,j], c=cmap[j], linewidth=2, 
                    label=['MSD_d30', 'MSD_d80', 'UNet_f8', 'UNet_f16', 'UNet_f32', 'UNet_f64'][j])
            else:
                ax.plot(metrics_walnuts[i,j], c=cmap[j], linewidth=2)

        ax.set_title(metrics[i])
        ax.set_xticks([0,1,2,3])
        ax.set_xticklabels(['random init', 'first epoch', 'best epoch', 'last epoch'], rotation=20)

    axes[1].legend(loc='lower right')
    plt.savefig(f'outputs/generalization_{task}_CV{cv}.png', bbox_inches='tight')
コード例 #8
0
def fig_convergence():
    """Study convergence by observing how models converge from the first to the last epoch"""

    global colors

    target_ims, input_ims = utils.load_phantom_ds(folder_path='PhantomsRadialNoisy/')

    ds = MultiOrbitDataset(input_ims, target_ims, data_augmentation=False)
    norm_dl = DataLoader(ds, batch_size=50, sampler=ValSampler(len(ds), 500))  

    models_dir = Path('/media/beta/florian/model_weights')
    metrics = ['SSIM', 'DSC', 'PSNR']

    models, model_names = get_models()  
    [model.set_normalization(norm_dl) for model in models]

    msd_cmap = cm.get_cmap('Purples', 6)(range(3,6,1))
    unet_cmap = cm.get_cmap('Oranges', 6)(range(3,6,1))

    for cv in ['01', '03', '05']:

        n_samples = 16
        mean_metrics = []

        ref_metrics = eval_init_metrics(metrics, ds)
        
        for e in range(5):
            fig, axes = plt.subplots(1, len(metrics), figsize=(len(metrics)*7.5,7.5))

            for i, name in enumerate(metrics):
                axes[i].plot([-.5, len(model_names)+.5], (ref_metrics[i],) *2, '--k', linewidth=3, alpha=.5)
                axes[i].set_title(name)
                axes[i].set_xticks(np.array([0,1, 3,4,5,6]))
                axes[i].set_xticklabels(model_names, rotation=30)

            for k, task in enumerate(['', '_transfer', '_shuffle']):
                if k == 0: legend_handles = []

                # Load models' state dicts after the first epoch
                [model.msd.load_state_dict(
                    torch.load(sorted(models_dir.glob(f'models_Pn_CV{cv}/MSD_d{d}_Pn{n_samples}{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[e], map_location='cpu'))
                for model, d in zip(models[:2], [30, 80])]

                [model.msd.load_state_dict(
                    torch.load(sorted(models_dir.glob(f'models_Pn_CV{cv}/UNet_f{f}_Pn{n_samples}{task}_CV{cv}_*/model_*.h5'), key=_nat_sort)[e], map_location='cpu'))
                for model, f in zip(models[-4:], [8, 16, 32, 64])]  

                mean_metrics.append(np.array(eval_metrics(models, metrics, ds)).mean(-1))

                for j in range(len(models)):
                    for i in range(len(metrics)):
                        cmap = msd_cmap if j < 2 else unet_cmap  
                        # axes[i].scatter(np.array([0,1, 3,4,5,6])[j] -.21 +.21*k, mean_metrics_1e[j,i], color=cmap[k], linewidth=5)
                        if e == 0: 
                            axes[i].arrow(np.array([0,1, 3,4,5,6])[j] -.21 +.21*k, mean_metrics[k][j,i], 0, 0,
                                                length_includes_head=False, width=.19, head_width=.3, 
                                                head_length=[.05,.05,1.5][i], color=cmap[k], alpha=.8)
                        else: 
                            axes[i].arrow(np.array([0,1, 3,4,5,6])[j] -.21 +.21*k, mean_metrics[k][j,i], 0, mean_metrics[e*3+k][j,i]-mean_metrics[k][j,i],
                                                length_includes_head=False, width=.19, head_width=.3, 
                                                head_length=[.05,.05,1.5][i], color=cmap[k], alpha=.8)

            cmap = cm.get_cmap('gray', 6)(range(2,-1,-1))
            legend_handles = [axes[2].arrow(0,0,0,0, width=0, head_width=0, color=cmap[i], alpha=.8) for i in range(3)]
            axes[1].legend(legend_handles, ['scratch', 'transfer', 'shuffle'], loc='lower left')

            for i in range(len(axes)):
                axes[i].set_ylim([[0,1],[0,1],[15,40]][i])

            plt.savefig(f'outputs/metrics_delta_Pn{n_samples}_CV{cv}_{e+1}e.png', bbox_inches='tight')

        frames = sorted(Path('outputs/').glob(f'metrics_delta_Pn{n_samples}_CV{cv}_[0-9]e.png'), key=_nat_sort)
        print(frames)
        frames = [imread(frame) for frame in frames]

        mimsave('outputs/convergence.gif', np.array(frames), fps=3)
            
        sys.exit()