コード例 #1
0
def _process_config(config_json, override_dotmap=None):
    """
    Processes config file:
        1) Converts it to a DotMap
        2) Creates experiments path and required subdirs
        3) Set up logging
    """
    config = DotMap(config_json)
    if override_dotmap is not None:
        config.update(override_dotmap)

    print("Loaded configuration: ")
    pprint(config)

    print()
    print(" *************************************** ")
    print("      Running experiment {}".format(config.exp_name))
    print(" *************************************** ")
    print()

    # NOTE: current setup overwrite every time...
    exp_base = config.exp_base
    if 'atamkin' in exp_base or 'wumike' in exp_base:
        # Excise existing user-specific prefix (like '/mnt/fs5/wumike/).
        exp_base = '/'.join(exp_base.split('/')[4:])
    if getpass.getuser() == 'atamkin':
        prefix = '/mnt/fs2/atamkin/'
    elif getpass.getuser() == 'wumike':
        prefix = '/mnt/fs5/wumike/'
    else:
        raise RuntimeError(
            f'Prefix not yet implemented for user {getpass.getuser()}.')
    exp_base = os.path.join(prefix, exp_base)

    # Uncomment me if you wish to not overwrite
    # timestamp = strftime('%Y-%m-%d--%H_%M_%S', localtime())
    exp_dir = os.path.join(exp_base, "experiments", config.exp_name)
    config.exp_dir = exp_dir

    # create some important directories to be used for the experiment.
    config.checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    config.out_dir = os.path.join(exp_dir, "out/")
    config.log_dir = os.path.join(exp_dir, "logs/")

    # will not create if already existing
    makedirs([config.checkpoint_dir, config.out_dir, config.log_dir])

    # save config to experiment dir
    config_out = os.path.join(exp_dir, 'config.json')
    save_json(config.toDict(), config_out)

    # setup logging in the project
    setup_logging(config.log_dir)

    logging.getLogger().info(
        "Configurations and directories successfully set up.")

    return config
コード例 #2
0
ファイル: setup.py プロジェクト: ranliu98/viewmaker
def _process_config(config_json, override_dotmap=None, exp_name_suffix=None):
    """
    Processes config file:
        1) Converts it to a DotMap
        2) Creates experiments path and required subdirs
        3) Set up logging
    """
    config = DotMap(config_json)
    if override_dotmap is not None:
        config.update(override_dotmap)

    if exp_name_suffix is not None:
        config.exp_name = f'{config.exp_name}_{exp_name_suffix}'

    print("Loaded configuration: ")
    pprint(config)

    print()
    print(" *************************************** ")
    print("      Running experiment {}".format(config.exp_name))
    print(" *************************************** ")
    print()

    exp_base = config.exp_base or DEFAULT_EXP_BASE
        
    # Uncomment me if you wish to not overwrite
    # timestamp = strftime('%Y-%m-%d--%H_%M_%S', localtime())
    exp_dir = os.path.join(exp_base, "experiments", config.exp_name)
    config.exp_dir = exp_dir

    # create some important directories to be used for the experiment.
    config.checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    config.out_dir = os.path.join(exp_dir, "out/")
    config.log_dir = os.path.join(exp_dir, "logs/")

    # will not create if already existing
    makedirs([config.checkpoint_dir, config.out_dir, config.log_dir])

    # save config to experiment dir
    config_out = os.path.join(exp_dir, 'config.json')
    save_json(config.toDict(), config_out)

    # setup logging in the project
    setup_logging(config.log_dir)

    logging.getLogger().info(
        "Configurations and directories successfully set up.")

    return config
コード例 #3
0
def main(base_model_name,
         weights_file,
         image_source,
         predictions_file,
         img_format='jpg'):
    # load samples
    if os.path.isfile(image_source):
        image_dir, samples = image_file_to_json(image_source)
    else:
        image_dir = image_source
        samples = image_dir_to_json(image_dir, img_type='jpg')

    # build model and load weights
    nima = Nima(base_model_name, weights=None)
    nima.build()
    nima.nima_model.load_weights(weights_file)

    # initialize data generator
    data_generator = TestDataGenerator(samples,
                                       image_dir,
                                       64,
                                       10,
                                       nima.preprocessing_function(),
                                       img_format=img_format)

    # get predictions
    predictions = predict(nima.nima_model, data_generator)

    # calc mean scores and add to samples
    for i, sample in enumerate(samples):
        sample['mean_score_prediction'] = calc_mean_score(predictions[i])

    print(samples)
    new_sample = sorted(samples,
                        key=lambda x: x["mean_score_prediction"],
                        reverse=True)
    print("new_sample: ", new_sample)
    # print(json.dumps(new_sample, indent=2))

    with open("img_quality.csv", "w", encoding="utf-8") as f:
        csv_writer = csv.writer(f)
        csv_writer.writerow(['id', 'mean'])
        for d in new_sample:
            csv_writer.writerow([d["image_id"], d["mean_score_prediction"]])

    if predictions_file is not None:
        save_json(new_sample, predictions_file)
コード例 #4
0
def _process_config(config_json, override_dotmap=None):
    """
    Processes config file:
        1) Converts it to a DotMap
        2) Creates experiments path and required subdirs
        3) Set up logging
    """
    config = DotMap(config_json)
    if override_dotmap is not None:
        config.update(override_dotmap)

    print("Loaded configuration: ")
    pprint(config)

    print()
    print(" *************************************** ")
    print("      Running experiment {}".format(config.exp_name))
    print(" *************************************** ")
    print()

    exp_base = config.exp_base
    timestamp = strftime('%Y-%m-%d--%H_%M_%S', localtime())
    exp_dir = os.path.join(exp_base, "experiments", config.exp_name, timestamp)

    # create some important directories to be used for the experiment.
    config.summary_dir = os.path.join(exp_dir, "summaries/")
    config.checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    config.out_dir = os.path.join(exp_dir, "out/")
    config.log_dir = os.path.join(exp_dir, "logs/")

    makedirs([
        config.summary_dir, config.checkpoint_dir, config.out_dir,
        config.log_dir
    ])

    # save config to experiment dir
    config_out = os.path.join(exp_dir, 'config.json')
    save_json(config.toDict(), config_out)

    # setup logging in the project
    setup_logging(config.log_dir)

    logging.getLogger().info(
        "Configurations and directories successfully set up.")

    return config
コード例 #5
0
def _process_config(config_json, override_dotmap=None):
    """
    Processes config file:
        1) Converts it to a DotMap
        2) Creates experiments path and required subdirs
        3) Set up logging
    """
    config = DotMap(config_json)
    if override_dotmap is not None:
        config.update(override_dotmap)

    print("Loaded configuration: ")
    pprint(config)

    print()
    print(" *************************************** ")
    print("      Running experiment {}".format(config.exp_name))
    print(" *************************************** ")
    print()

    # if config.pretrained_exp_dir is not None:
    #     # don't make new dir more continuing training
    #     exp_dir = config.pretrained_exp_dir
    #     print("[INFO]: Continuing from previously finished training at %s." % exp_dir)
    # else:
    exp_base = config.exp_base

    if config.debug:
        exp_dir = os.path.join(exp_base, "experiments", config.exp_name,
                               'debug')
    else:
        if config.pretrained_exp_dir is not None and isinstance(
                config.pretrained_exp_dir, str):
            # don't make new dir more continuing training
            exp_dir = config.pretrained_exp_dir
            print('[INFO]: Backup previously trained model and config json')
            os.system("cp %s/config.json %s/prev_config.json" %
                      (exp_dir, exp_dir))
            os.system(
                "cp %s/checkpoints/checkpoint.pth.tar %s/checkpoints/prev_checkpoint.pth.tar"
                % (exp_dir, exp_dir))
            os.system(
                "cp %s/checkpoints/model_best.pth.tar %s/checkpoints/prev_model_best.pth.tar"
                % (exp_dir, exp_dir))
        elif config.continue_exp_dir is not None and isinstance(
                config.continue_exp_dir, str):
            exp_dir = config.continue_exp_dir
            print('[INFO]: Backup previously trained model and config json')
            os.system("cp %s/config.json %s/prev_config.json" %
                      (exp_dir, exp_dir))
            os.system(
                "cp %s/checkpoints/checkpoint.pth.tar %s/checkpoints/prev_checkpoint.pth.tar"
                % (exp_dir, exp_dir))
            os.system(
                "cp %s/checkpoints/model_best.pth.tar %s/checkpoints/prev_model_best.pth.tar"
                % (exp_dir, exp_dir))
        else:
            if config.exp_id is None:
                config.exp_id = strftime('%Y-%m-%d--%H_%M_%S', localtime())
            exp_dir = os.path.join(exp_base, "experiments", config.exp_name,
                                   config.exp_id)

    # create some important directories to be used for the experiment.
    config.summary_dir = os.path.join(exp_dir, "summaries/")
    config.checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    config.out_dir = os.path.join(exp_dir, "out/")
    config.log_dir = os.path.join(exp_dir, "logs/")

    makedirs([
        config.summary_dir, config.checkpoint_dir, config.out_dir,
        config.log_dir
    ])

    # save config to experiment dir
    config_out = os.path.join(exp_dir, 'config.json')
    save_json(config.toDict(), config_out)

    # setup logging in the project
    setup_logging(config.log_dir)

    logging.getLogger().info("Experiment directory is located at %s" % exp_dir)

    logging.getLogger().info(
        "Configurations and directories successfully set up.")
    return config
コード例 #6
0
def main(target_file, source_file_mean):
    df = get_dataframe(source_file_mean)
    samples = parse_raw_data(df)
    save_json(samples, target_file)
    print('Done! Saved JSON at {}'.format(target_file))
コード例 #7
0
def main(target_file, source_file_mean):
    df = get_dataframe(source_file_mean)
    samples = parse_raw_data(df)
    save_json(samples, target_file)
    print('Done! Saved JSON at {}'.format(target_file))