def run(agent, agent_name, env: UnityEnvironment, num_episodes=10000, is_training=True) -> List[float]: scores = [] max_avg_score = -np.inf solved = False logger = Logger(f'results/{agent_name}/progress.txt') logger.write(f'Progress for {agent_name} agent\n') for i_episode in trange(1, num_episodes + 1): total_reward = rollout(agent, env) scores.append(total_reward) if len(scores) >= 100: avg_score = np.mean(scores[-100:]) max_avg_score = max(max_avg_score, avg_score) if i_episode % 100 == 0: logger.write( f'Episode {i_episode}/{num_episodes} | Max Average Score: {max_avg_score:.4f} | Average Score: {avg_score:.4f}\n ' ) if max_avg_score >= 0.5 and not solved: logger.write( f'Task solved in {i_episode} episodes, with average score over the last 100 episode: {max_avg_score}\n' ) solved = True agent.save(f'results/{agent_name}/checkpoint.pth') logger.close() with open(f'results/{agent_name}/scores.npy', 'wb') as f: np.save(f, scores) return scores
def main(_): print("-" * 80) if not os.path.isdir(FLAGS.output_dir): print("Path {} does not exist. Creating.".format(FLAGS.output_dir)) os.makedirs(FLAGS.output_dir) os.makedirs(FLAGS.summary_dir) elif FLAGS.reset_output_dir: print("Path {} exists. Remove and remake.".format(FLAGS.output_dir)) shutil.rmtree(FLAGS.output_dir) shutil.rmtree(FLAGS.summary_dir) os.makedirs(FLAGS.output_dir) os.makedirs(FLAGS.summary_dir) print("-" * 80) log_file = os.path.join(FLAGS.output_dir, "stdout") print("Logging to {}".format(log_file)) sys.stdout = Logger(log_file) utils.print_user_flags() if FLAGS.search_space is None: train_net() else: train_search()
def train_marry_up(args): assert args.additional_state == 0 if args.model_type == 'KnowledgeDistill': assert args.marryup_type == 'none' if args.model_type == 'PR': assert args.marryup_type == 'none' all_pred_train, all_pred_dev, all_pred_test, all_out_train, all_out_dev, all_out_test = PredictByRE( args) logger = Logger() # config = Config_MarryUp(args) dset = load_classification_dataset(args.dataset) t2i, i2t, in2i, i2in = dset['t2i'], dset['i2t'], dset['in2i'], dset['i2in'] query_train, intent_train = dset['query_train'], dset['intent_train'] query_dev, intent_dev = dset['query_dev'], dset['intent_dev'] query_test, intent_test = dset['query_test'], dset['intent_test'] len_stats(query_train) len_stats(query_dev) len_stats(query_test) # extend the padding # add pad <pad> to the last of vocab i2t[len(i2t)] = '<pad>' t2i['<pad>'] = len(i2t) - 1 train_query, _, train_lengths = pad_dataset(query_train, args, t2i['<pad>']) dev_query, _, dev_lengths = pad_dataset(query_dev, args, t2i['<pad>']) test_query, _, test_lengths = pad_dataset(query_test, args, t2i['<pad>']) shots = int(len(train_query) * args.train_portion) if args.use_unlabel: intent_data_train = MarryUpIntentBatchDatasetUtilizeUnlabel( train_query, train_lengths, intent_train, all_pred_train, all_out_train, shots) elif args.train_portion == 0: # special case when train portion==0 and do not use unlabel data, should have no data intent_data_train = None else: intent_data_train = MarryUpIntentBatchDataset(train_query, train_lengths, intent_train, all_out_train, shots) # should have no/few dev data in low-resource setting if args.train_portion == 0: intent_data_dev = None elif args.train_portion <= 0.01: intent_data_dev = MarryUpIntentBatchDataset(dev_query, dev_lengths, intent_dev, all_out_dev, shots) else: intent_data_dev = MarryUpIntentBatchDataset( dev_query, dev_lengths, intent_dev, all_out_dev, ) intent_data_test = MarryUpIntentBatchDataset(test_query, test_lengths, intent_test, all_out_test) print('len train dataset {}'.format( len(intent_data_train) if intent_data_train else 0)) print('len dev dataset {}'.format( len(intent_data_dev) if intent_data_dev else 0)) print('len test dataset {}'.format(len(intent_data_test))) intent_dataloader_train = DataLoader( intent_data_train, batch_size=args.bz) if intent_data_train else None intent_dataloader_dev = DataLoader( intent_data_dev, batch_size=args.bz) if intent_data_dev else None intent_dataloader_test = DataLoader(intent_data_test, batch_size=args.bz) pretrained_embed = load_glove_embed('../data/{}/'.format(args.dataset), args.embed_dim) if args.random_embed: pretrained_embed = np.random.random(pretrained_embed.shape) # for padding pretrain_embed_extend = np.append(pretrained_embed, np.zeros((1, args.embed_dim), dtype=np.float), axis=0) model = IntentMarryUp( pretrained_embed=pretrain_embed_extend, config=args, label_size=len(in2i), ) criterion = torch.nn.CrossEntropyLoss() if args.optimizer == 'SGD': optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=0) if args.optimizer == 'ADAM': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0) if torch.cuda.is_available(): model = model.cuda() pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('ALL TRAINABLE PARAMETERS: {}'.format(pytorch_total_params)) acc_dev_init, avg_loss_dev_init, p, r = val_marry(model, intent_dataloader_dev, 0, 'DEV', args, logger) # TEST acc_test_init, avg_loss_test_init, p, r = val_marry( model, intent_dataloader_test, 0, 'TEST', args, logger) best_dev_acc = acc_dev_init counter = 0 best_dev_model = deepcopy(model) # when no training data, just run a test. if not intent_dataloader_train: args.epoch = 0 for epoch in range(1, args.epoch + 1): avg_loss = 0 acc = 0 pbar_train = tqdm(intent_dataloader_train) pbar_train.set_description("TRAIN EPOCH {}".format(epoch)) model.train() for batch in pbar_train: optimizer.zero_grad() x = batch['x'] label = batch['i'].view(-1) lengths = batch['l'] re_tag = batch['re'] if torch.cuda.is_available(): x = x.cuda() lengths = lengths.cuda() label = label.cuda() re_tag = re_tag.cuda() scores = model(x, lengths, re_tag) loss_cross_entropy = criterion(scores, label) if args.model_type == 'MarryUp': loss = loss_cross_entropy elif args.model_type == 'KnowledgeDistill': softmax_scores = torch.log_softmax(scores, 1) softmax_re_tag_teacher = torch.softmax(re_tag, 1) loss_KL = torch.nn.KLDivLoss()(softmax_scores, softmax_re_tag_teacher) loss = loss_cross_entropy * args.l1 + loss_KL * ( 1 - args.l1 ) # in KD, l1 stands for the alpha controlling to learn from true / imitate teacher elif args.model_type == 'PR': log_softmax_scores = torch.log_softmax(scores, 1) softmax_scores = torch.softmax(scores, 1) product_term = torch.exp( re_tag - 1 ) * args.l2 #in PR, l2 stands for the regularization term, higher l2, harder rule constraint teacher_score = torch.mul(softmax_scores, product_term) softmax_teacher = torch.softmax(teacher_score, 1) loss_KL = torch.nn.KLDivLoss()(log_softmax_scores, softmax_teacher) loss = loss_cross_entropy * args.l1 + loss_KL * ( 1 - args.l1 ) # in PR, l1 stands for the alpha controlling to learn from true / imitate teacher loss.backward() optimizer.step() avg_loss += loss.item() acc += (scores.argmax(1) == label).sum().item() pbar_train.set_postfix_str( "{} - total right: {}, total loss: {}".format( 'TRAIN', acc, loss)) acc = acc / len(intent_data_train) avg_loss = avg_loss / len(intent_data_train) # print("{} Epoch: {} | ACC: {}, LOSS: {}".format('TRAIN', epoch, acc, avg_loss)) logger.add("{} Epoch: {} | ACC: {}, LOSS: {}".format( 'TRAIN', epoch, acc, avg_loss)) # DEV acc_dev, avg_loss_dev, p, r = val_marry(model, intent_dataloader_dev, epoch, 'DEV', args, logger) counter += 1 # counter for early stopping if (acc_dev is None) or (acc_dev > best_dev_acc): counter = 0 best_dev_acc = acc_dev best_dev_model = deepcopy(model) if counter > args.early_stop: break best_dev_test_acc, avg_loss_test, best_dev_test_p, best_dev_test_r \ = val_marry(best_dev_model, intent_dataloader_dev, epoch, 'TEST', args, logger) return acc_dev_init, acc_test_init, best_dev_acc, best_dev_test_acc, best_dev_test_p, best_dev_test_r, logger.record
def train_fsa_rnn(args, paths): logger = Logger() # config = Config_Integrate(args) dset = load_classification_dataset(args.dataset) t2i, i2t, in2i, i2in = dset['t2i'], dset['i2t'], dset['in2i'], dset['i2in'] query_train, intent_train = dset['query_train'], dset['intent_train'] query_dev, intent_dev = dset['query_dev'], dset['intent_dev'] query_test, intent_test = dset['query_test'], dset['intent_test'] len_stats(query_train) len_stats(query_dev) len_stats(query_test) # extend the padding # add pad <pad> to the last of vocab i2t[len(i2t)] = '<pad>' t2i['<pad>'] = len(i2t) - 1 train_query, train_query_inverse, train_lengths = pad_dataset( query_train, args, t2i['<pad>']) dev_query, dev_query_inverse, dev_lengths = pad_dataset( query_dev, args, t2i['<pad>']) test_query, test_query_inverse, test_lengths = pad_dataset( query_test, args, t2i['<pad>']) shots = int(len(train_query) * args.train_portion) if args.use_unlabel: all_pred_train, all_pred_dev, all_pred_test, all_out_train, all_out_dev, all_out_test = PredictByRE( args) intent_data_train = ATISIntentBatchDatasetUtilizeUnlabel( train_query, train_query_inverse, train_lengths, intent_train, all_pred_train, all_out_train, shots) elif args.train_portion == 0: # special case when train portion==0 and do not use unlabel data, should have no data intent_data_train = None else: intent_data_train = ATISIntentBatchDatasetBidirection( train_query, train_query_inverse, train_lengths, intent_train, shots) # should have no/few dev data in low-resource setting if args.train_portion == 0: intent_data_dev = None elif args.train_portion <= 0.01: intent_data_dev = ATISIntentBatchDatasetBidirection( dev_query, dev_query_inverse, dev_lengths, intent_dev, shots) else: intent_data_dev = ATISIntentBatchDatasetBidirection( dev_query, dev_query_inverse, dev_lengths, intent_dev) intent_data_test = ATISIntentBatchDatasetBidirection( test_query, test_query_inverse, test_lengths, intent_test, ) intent_dataloader_train = DataLoader( intent_data_train, batch_size=args.bz) if intent_data_train else None intent_dataloader_dev = DataLoader( intent_data_dev, batch_size=args.bz) if intent_data_dev else None intent_dataloader_test = DataLoader(intent_data_test, batch_size=args.bz) print('len train dataset {}'.format( len(intent_data_train) if intent_data_train else 0)) print('len dev dataset {}'.format( len(intent_data_dev) if intent_data_dev else 0)) print('len test dataset {}'.format(len(intent_data_test))) print('num labels: {}'.format(len(in2i))) print('num vocabs: {}'.format(len(t2i))) forward_params = dict() forward_params['V_embed_extend'], forward_params['pretrain_embed_extend'], forward_params['mat'], forward_params['bias'], \ forward_params['D1'], forward_params['D2'], forward_params['language_mask'], forward_params['language'], forward_params['wildcard_mat'], \ forward_params['wildcard_mat_origin_extend'] = \ get_init_params(args, in2i, i2in, t2i, paths[0]) if args.bidirection: backward_params = dict() backward_params['V_embed_extend'], backward_params['pretrain_embed_extend'], backward_params['mat'], backward_params['bias'], \ backward_params['D1'], backward_params['D2'], backward_params['language_mask'], backward_params['language'], backward_params['wildcard_mat'], \ backward_params['wildcard_mat_origin_extend'] = \ get_init_params(args, in2i, i2in, t2i, paths[1]) # get h1 for FSAGRU h1_forward = None h1_backward = None if args.farnn == 1: args.farnn = 0 temp_model = FSARNNIntegrateEmptyStateSaperateGRU( pretrained_embed=forward_params['pretrain_embed_extend'], trans_r_1=forward_params['D1'], trans_r_2=forward_params['D2'], embed_r=forward_params['V_embed_extend'], trans_wildcard=forward_params['wildcard_mat'], config=args, ) input_x = torch.LongTensor([[t2i['BOS']]]) if torch.cuda.is_available(): temp_model.cuda() input_x = input_x.cuda() h1_forward = temp_model.viterbi(input_x, None).detach() h1_forward = h1_forward.reshape(-1) if args.bidirection: temp_model = FSARNNIntegrateEmptyStateSaperateGRU( pretrained_embed=backward_params['pretrain_embed_extend'], trans_r_1=backward_params['D1'], trans_r_2=backward_params['D2'], embed_r=backward_params['V_embed_extend'], trans_wildcard=backward_params['wildcard_mat'], config=args, ) input_x = torch.LongTensor([[t2i['EOS']]]) if torch.cuda.is_available(): temp_model.cuda() input_x = input_x.cuda() h1_backward = temp_model.viterbi(input_x, None).detach() h1_backward = h1_backward.reshape(-1) args.farnn = 1 if args.bidirection: model = IntentIntegrateSaperateBidirection_B( pretrained_embed=forward_params['pretrain_embed_extend'], forward_params=forward_params, backward_params=backward_params, config=args, h1_forward=h1_forward, h1_backward=h1_backward) else: model = IntentIntegrateSaperate_B( pretrained_embed=forward_params['pretrain_embed_extend'], trans_r_1=forward_params['D1'], trans_r_2=forward_params['D2'], embed_r=forward_params['V_embed_extend'], trans_wildcard=forward_params['wildcard_mat'], config=args, mat=forward_params['mat'], bias=forward_params['bias'], h1_forward=h1_forward, ) if args.loss_type == 'CrossEntropy': criterion = torch.nn.CrossEntropyLoss() elif args.loss_type == 'NormalizeNLL': criterion = relu_normalized_NLLLoss else: print("Wrong loss function") if args.optimizer == 'SGD': optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=0) if args.optimizer == 'ADAM': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0) if torch.cuda.is_available(): model = model.cuda() pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('ALL TRAINABLE PARAMETERS: {}'.format(pytorch_total_params)) # TRAIN acc_train_init, avg_loss_train_init, train_init_p, train_init_r = val( model, intent_dataloader_train, epoch=0, mode='TRAIN', config=args, i2in=i2in, logger=logger, criterion=criterion) # DEV acc_dev_init, avg_loss_dev_init, dev_init_p, dev_init_r = val( model, intent_dataloader_dev, epoch=0, mode='DEV', config=args, i2in=i2in, logger=logger, criterion=criterion) # TEST acc_test_init, avg_loss_test_init, test_init_p, test_init_r = val( model, intent_dataloader_test, epoch=0, mode='TEST', config=args, i2in=i2in, logger=logger, criterion=criterion) print("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}".format( 'TRAIN', acc_train_init, avg_loss_train_init, train_init_p, train_init_r)) print("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}".format( 'DEV', acc_dev_init, avg_loss_dev_init, dev_init_p, dev_init_r)) print("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}".format( 'TEST', acc_test_init, avg_loss_test_init, test_init_p, test_init_r)) logger.add("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}".format( 'TRAIN', acc_train_init, avg_loss_train_init, train_init_p, train_init_r)) logger.add("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}".format( 'DEV', acc_dev_init, avg_loss_dev_init, dev_init_p, dev_init_r)) logger.add("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}".format( 'TEST', acc_test_init, avg_loss_test_init, test_init_p, test_init_r)) if args.only_probe: exit(0) best_dev_acc = acc_dev_init counter = 0 best_dev_model = deepcopy(model) if not intent_dataloader_train: args.epoch = 0 for epoch in range(1, args.epoch + 1): avg_loss = 0 acc = 0 pbar_train = tqdm(intent_dataloader_train) pbar_train.set_description("TRAIN EPOCH {}".format(epoch)) model.train() for batch in pbar_train: optimizer.zero_grad() x_forward = batch['x_forward'] x_backward = batch['x_backward'] label = batch['i'].view(-1) lengths = batch['l'] if torch.cuda.is_available(): x_forward = batch['x_forward'].cuda() x_backward = batch['x_backward'].cuda() lengths = lengths.cuda() label = label.cuda() if args.bidirection: scores = model(x_forward, x_backward, lengths) else: scores = model(x_forward, lengths) loss = criterion(scores, label) loss.backward() optimizer.step() avg_loss += loss.item() acc += (scores.argmax(1) == label).sum().item() pbar_train.set_postfix_str( "{} - total right: {}, total loss: {}".format( 'TRAIN', acc, loss)) acc = acc / len(intent_data_train) avg_loss = avg_loss / len(intent_data_train) print("{} Epoch: {} | ACC: {}, LOSS: {}".format( 'TRAIN', epoch, acc, avg_loss)) logger.add("{} Epoch: {} | ACC: {}, LOSS: {}".format( 'TRAIN', epoch, acc, avg_loss)) # DEV acc_dev, avg_loss_dev, p, r = val(model, intent_dataloader_dev, epoch, 'DEV', logger, config=args, criterion=criterion) counter += 1 # counter for early stopping if (acc_dev is None) or (acc_dev > best_dev_acc): counter = 0 best_dev_acc = acc_dev best_dev_model = deepcopy(model) if counter > args.early_stop: break best_dev_test_acc, avg_loss_test, best_dev_test_p, best_dev_test_r \ = val(best_dev_model, intent_dataloader_test, epoch, 'TEST', logger, config=args, criterion=criterion) # Save the model datetime_str = create_datetime_str() model_save_path = "../model/{}/D{:.4f}-T{:.4f}-DI{:.4f}-TI{:.4f}-{}-{}-{}".format( args.run, best_dev_acc, best_dev_test_acc, acc_dev_init, acc_test_init, datetime_str, args.dataset, args.seed) mkdir("../model/{}/".format(args.run)) mkdir(model_save_path) print("SAVING MODEL {} .....".format(model_save_path)) torch.save(model.state_dict(), model_save_path + '.model') return acc_dev_init, acc_test_init, best_dev_acc, best_dev_test_acc, best_dev_test_p, best_dev_test_r, logger.record
def train_onehot(args, paths): logger = Logger() dset = load_classification_dataset(args.dataset) t2i, i2t, in2i, i2in = dset['t2i'], dset['i2t'], dset['in2i'], dset['i2in'] query_train, intent_train = dset['query_train'], dset['intent_train'] query_dev, intent_dev = dset['query_dev'], dset['intent_dev'] query_test, intent_test = dset['query_test'], dset['intent_test'] len_stats(query_train) len_stats(query_dev) len_stats(query_test) # extend the padding # add pad <pad> to the last of vocab i2t[len(i2t)] = '<pad>' t2i['<pad>'] = len(i2t) - 1 train_query, train_query_inverse, train_lengths = pad_dataset( query_train, args, t2i['<pad>']) dev_query, dev_query_inverse, dev_lengths = pad_dataset( query_dev, args, t2i['<pad>']) test_query, test_query_inverse, test_lengths = pad_dataset( query_test, args, t2i['<pad>']) shots = int(len(train_query) * args.train_portion) assert args.train_portion == 1.0 # We currently not support ublabel and low-resource for onehot intent_data_train = ATISIntentBatchDataset(train_query, train_lengths, intent_train, shots) intent_data_dev = ATISIntentBatchDataset(dev_query, dev_lengths, intent_dev, shots) intent_data_test = ATISIntentBatchDataset(test_query, test_lengths, intent_test) intent_dataloader_train = DataLoader(intent_data_train, batch_size=args.bz) intent_dataloader_dev = DataLoader(intent_data_dev, batch_size=args.bz) intent_dataloader_test = DataLoader(intent_data_test, batch_size=args.bz) automata_dicts = load_pkl(paths[0]) if 'automata' not in automata_dicts: automata = automata_dicts else: automata = automata_dicts['automata'] language_tensor, state2idx, wildcard_mat, language = dfa_to_tensor( automata, t2i) complete_tensor = language_tensor + wildcard_mat assert args.additional_state == 0 if args.dataset == 'ATIS': mat, bias = create_mat_and_bias_with_empty_ATIS( automata, in2i=in2i, i2in=i2in, ) elif args.dataset == 'TREC': mat, bias = create_mat_and_bias_with_empty_TREC( automata, in2i=in2i, i2in=i2in, ) elif args.dataset == 'SMS': mat, bias = create_mat_and_bias_with_empty_SMS( automata, in2i=in2i, i2in=i2in, ) # for padding V, S1, S2 = complete_tensor.shape complete_tensor_extend = np.concatenate( (complete_tensor, np.zeros((1, S1, S2)))) print(complete_tensor_extend.shape) model = IntentIntegrateOnehot(complete_tensor_extend, config=args, mat=mat, bias=bias) mode = 'onehot' if args.loss_type == 'CrossEntropy': criterion = torch.nn.CrossEntropyLoss() elif args.loss_type == 'NormalizeNLL': criterion = relu_normalized_NLLLoss else: print("Wrong loss function") if args.optimizer == 'SGD': optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=0) if args.optimizer == 'ADAM': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0) if torch.cuda.is_available(): model = model.cuda() acc_train_init, avg_loss_train_init, p, r = val(model, intent_dataloader_train, epoch=0, mode='TRAIN', config=args, i2in=i2in, criterion=criterion) # DEV acc_dev_init, avg_loss_dev_init, p, r = val(model, intent_dataloader_dev, epoch=0, mode='DEV', config=args, i2in=i2in, criterion=criterion) # TEST acc_test_init, avg_loss_test_init, p, r = val(model, intent_dataloader_test, epoch=0, mode='TEST', config=args, i2in=i2in, criterion=criterion) best_dev_acc = acc_dev_init counter = 0 best_dev_test_acc = acc_test_init for epoch in range(1, args.epoch + 1): avg_loss = 0 acc = 0 pbar_train = tqdm(intent_dataloader_train) pbar_train.set_description("TRAIN EPOCH {}".format(epoch)) model.train() for batch in pbar_train: optimizer.zero_grad() x = batch['x'] label = batch['i'].view(-1) lengths = batch['l'] if torch.cuda.is_available(): x = x.cuda() lengths = lengths.cuda() label = label.cuda() scores = model(x, lengths) loss_cross_entropy = criterion(scores, label) loss = loss_cross_entropy loss.backward() optimizer.step() avg_loss += loss.item() acc += (scores.argmax(1) == label).sum().item() pbar_train.set_postfix_str( "{} - total right: {}, total loss: {}".format( 'TRAIN', acc, loss)) acc = acc / len(intent_data_train) avg_loss = avg_loss / len(intent_data_train) print("{} Epoch: {} | ACC: {}, LOSS: {}".format( 'TRAIN', epoch, acc, avg_loss)) logger.add("{} Epoch: {} | ACC: {}, LOSS: {}".format( 'TRAIN', epoch, acc, avg_loss)) # DEV acc_dev, avg_loss_dev, p, r = val(model, intent_dataloader_dev, epoch, 'DEV', logger, config=args, criterion=criterion) # TEST acc_test, avg_loss_test, p, r = val(model, intent_dataloader_test, epoch, 'TEST', logger, config=args, criterion=criterion) counter += 1 # counter for early stopping if (acc_dev is None) or (acc_dev > best_dev_acc): counter = 0 best_dev_acc = acc_dev best_dev_test_acc = acc_test if counter > args.early_stop: break return acc_dev_init, acc_test_init, best_dev_acc, best_dev_test_acc, logger.record
def PredictByRE( args, params=None, dset=None, ): logger = Logger() if not dset: dset = load_classification_dataset(args.dataset) t2i, i2t, in2i, i2in = dset['t2i'], dset['i2t'], dset['in2i'], dset['i2in'] query_train, intent_train = dset['query_train'], dset['intent_train'] query_dev, intent_dev = dset['query_dev'], dset['intent_dev'] query_test, intent_test = dset['query_test'], dset['intent_test'] len_stats(query_train) len_stats(query_dev) len_stats(query_test) # extend the padding # add pad <pad> to the last of vocab i2t[len(i2t)] = '<pad>' t2i['<pad>'] = len(i2t) - 1 train_query, train_query_inverse, train_lengths = pad_dataset( query_train, args, t2i['<pad>']) dev_query, dev_query_inverse, dev_lengths = pad_dataset( query_dev, args, t2i['<pad>']) test_query, test_query_inverse, test_lengths = pad_dataset( query_test, args, t2i['<pad>']) intent_data_train = ATISIntentBatchDataset(train_query, train_lengths, intent_train) intent_data_dev = ATISIntentBatchDataset(dev_query, dev_lengths, intent_dev) intent_data_test = ATISIntentBatchDataset(test_query, test_lengths, intent_test) intent_dataloader_train = DataLoader(intent_data_train, batch_size=args.bz) intent_dataloader_dev = DataLoader(intent_data_dev, batch_size=args.bz) intent_dataloader_test = DataLoader(intent_data_test, batch_size=args.bz) if params is None: automata_dicts = load_pkl(args.automata_path_forward) automata = automata_dicts['automata'] language_tensor, state2idx, wildcard_mat, language = dfa_to_tensor( automata, t2i) complete_tensor = language_tensor + wildcard_mat if args.dataset == 'ATIS': mat, bias = create_mat_and_bias_with_empty_ATIS( automata, in2i=in2i, i2in=i2in, ) elif args.dataset == 'TREC': mat, bias = create_mat_and_bias_with_empty_TREC( automata, in2i=in2i, i2in=i2in, ) elif args.dataset == 'SMS': mat, bias = create_mat_and_bias_with_empty_SMS( automata, in2i=in2i, i2in=i2in, ) else: complete_tensor = params['complete_tensor'] mat, bias = params['mat'], params['bias'] # for padding V, S1, S2 = complete_tensor.shape complete_tensor_extend = np.concatenate( (complete_tensor, np.zeros((1, S1, S2)))) print(complete_tensor_extend.shape) model = IntentIntegrateOnehot(complete_tensor_extend, config=args, mat=mat, bias=bias) if torch.cuda.is_available(): model.cuda() # # TRAIN print('RE TRAIN ACC') all_pred_train, all_out_train = REclassifier(model, intent_dataloader_train, config=args, i2in=i2in) # DEV print('RE DEV ACC') all_pred_dev, all_out_dev = REclassifier(model, intent_dataloader_dev, config=args, i2in=i2in) # TEST print('RE TEST ACC') all_pred_test, all_out_test = REclassifier(model, intent_dataloader_test, config=args, i2in=i2in) return all_pred_train, all_pred_dev, all_pred_test, all_out_train, all_out_dev, all_out_test
def train_fsa_rnn(args, paths): logger = Logger() dset = load_classification_dataset(args.dataset) t2i, i2t, in2i, i2in = dset['t2i'], dset['i2t'], dset['in2i'], dset['i2in'] query_train, intent_train = dset['query_train'], dset['intent_train'] query_dev, intent_dev = dset['query_dev'], dset['intent_dev'] query_test, intent_test = dset['query_test'], dset['intent_test'] len_stats(query_train) len_stats(query_dev) len_stats(query_test) # extend the padding # add pad <pad> to the last of vocab i2t[len(i2t)] = '<pad>' t2i['<pad>'] = len(i2t) - 1 train_query, train_query_inverse, train_lengths = pad_dataset(query_train, args, t2i['<pad>']) dev_query, dev_query_inverse, dev_lengths = pad_dataset(query_dev, args, t2i['<pad>']) test_query, test_query_inverse, test_lengths = pad_dataset(query_test, args, t2i['<pad>']) shots = int(len(train_query) * args.train_portion) intent_data_train = ATISIntentBatchDatasetBidirection(train_query, train_query_inverse, train_lengths, intent_train, shots) intent_data_dev = ATISIntentBatchDatasetBidirection(dev_query, dev_query_inverse, dev_lengths, intent_dev) intent_data_test = ATISIntentBatchDatasetBidirection(test_query, test_query_inverse, test_lengths, intent_test, ) intent_dataloader_train = DataLoader(intent_data_train, batch_size=args.bz) if intent_data_train else None intent_dataloader_dev = DataLoader(intent_data_dev, batch_size=args.bz) if intent_data_dev else None intent_dataloader_test = DataLoader(intent_data_test, batch_size=args.bz) print('len train dataset {}'.format(len(intent_data_train) if intent_data_train else 0)) print('len dev dataset {}'.format(len(intent_data_dev) if intent_data_dev else 0)) print('len test dataset {}'.format(len(intent_data_test))) print('num labels: {}'.format(len(in2i))) print('num vocabs: {}'.format(len(t2i))) forward_params = dict() forward_params['V_embed_extend'], forward_params['pretrain_embed_extend'], forward_params['mat'], forward_params['bias'], \ forward_params['D1'], forward_params['D2'], forward_params['language_mask'], forward_params['language'], forward_params['wildcard_mat'], \ forward_params['wildcard_mat_origin_extend'] = \ get_init_params(args, in2i, i2in, t2i, paths[0]) model = IntentClassification(pretrained_embed=forward_params['pretrain_embed_extend'], trans_r_1=forward_params['D1'], trans_r_2=forward_params['D2'], embed_r=forward_params['V_embed_extend'], trans_wildcard=forward_params['wildcard_mat'], config=args, mat=forward_params['mat'], bias=forward_params['bias']) criterion = torch.nn.CrossEntropyLoss() if args.optimizer == 'SGD': optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=0) if args.optimizer == 'ADAM': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0) if torch.cuda.is_available(): model = model.cuda() pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('ALL TRAINABLE PARAMETERS: {}'.format(pytorch_total_params)) # TRAIN acc_train_init, avg_loss_train_init, train_init_p, train_init_r = \ val(model, intent_dataloader_train, epoch=0, mode='TRAIN', config=args, i2in=i2in, logger=logger, criterion=criterion) # DEV acc_dev_init, avg_loss_dev_init, dev_init_p, dev_init_r = \ val(model, intent_dataloader_dev, epoch=0, mode='DEV', config=args, i2in=i2in, logger=logger, criterion=criterion) # TEST acc_test_init, avg_loss_test_init, test_init_p, test_init_r = \ val(model, intent_dataloader_test, epoch=0, mode='TEST', config=args, i2in=i2in, logger=logger, criterion=criterion) print("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}". format('TRAIN', acc_train_init, avg_loss_train_init, train_init_p, train_init_r)) print("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}". format('DEV', acc_dev_init, avg_loss_dev_init, dev_init_p, dev_init_r)) print("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}". format('TEST', acc_test_init, avg_loss_test_init, test_init_p, test_init_r)) logger.add("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}". format('TRAIN', acc_train_init, avg_loss_train_init, train_init_p, train_init_r)) logger.add("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}". format('DEV', acc_dev_init, avg_loss_dev_init, dev_init_p, dev_init_r)) logger.add("{} INITIAL: ACC: {}, LOSS: {}, P: {}, R: {}". format('TEST', acc_test_init, avg_loss_test_init, test_init_p, test_init_r)) best_dev_acc = acc_dev_init counter = 0 best_dev_model = deepcopy(model) for epoch in range(1, args.epoch + 1): avg_loss = 0 acc = 0 pbar_train = tqdm(intent_dataloader_train) pbar_train.set_description("TRAIN EPOCH {}".format(epoch)) model.train() for batch in pbar_train: optimizer.zero_grad() x_forward = batch['x_forward'] label = batch['i'].view(-1) lengths = batch['l'] if torch.cuda.is_available(): x_forward = batch['x_forward'].cuda() lengths = lengths.cuda() label = label.cuda() scores = model(x_forward, lengths) loss = criterion(scores, label) loss.backward() optimizer.step() avg_loss += loss.item() acc += (scores.argmax(1) == label).sum().item() pbar_train.set_postfix_str("{} - total right: {}, total loss: {}".format('TRAIN', acc, loss)) acc = acc / len(intent_data_train) avg_loss = avg_loss / len(intent_data_train) print("{} Epoch: {} | ACC: {}, LOSS: {}".format('TRAIN', epoch, acc, avg_loss)) logger.add("{} Epoch: {} | ACC: {}, LOSS: {}".format('TRAIN', epoch, acc, avg_loss)) # DEV acc_dev, avg_loss_dev, p, r = val(model, intent_dataloader_dev, epoch, 'DEV', logger, config=args, criterion=criterion) counter += 1 # counter for early stopping if (acc_dev is None) or (acc_dev > best_dev_acc): counter = 0 best_dev_acc = acc_dev best_dev_model = deepcopy(model) if counter > args.early_stop: break best_dev_test_acc, avg_loss_test, best_dev_test_p, best_dev_test_r \ = val(best_dev_model, intent_dataloader_test, epoch, 'TEST', logger, config=args, criterion=criterion) results = [acc_dev_init, acc_test_init, best_dev_acc, best_dev_test_acc] save_args_and_results(args, results, logger)