コード例 #1
0
            model = train(train_val_x, train_val_y, best_C)

            t3 = time.time()
            print("training time:", t3 - t2)

            pred = predict(test_x, test_y, model)

            t4 = time.time()
            print("testing time:", t4 - t3)

            accuracies.append(accuracy_score(pred, test_y) * 100)
            print(accuracy_score(pred, test_y) * 100)
            train_times.append(t3 - t2)
            test_times.append(t4 - t3)

        mean_accuracies.append(mean(accuracies))

    acc_list.append(mean(mean_accuracies))
    std_list.append(stdev(mean_accuracies))
    train_time_list.append(mean(train_times))
    test_time_list.append(mean(test_times))

dict_to_csv(
    {
        'accuracy': acc_list,
        'error': std_list,
        'train_time': train_time_list,
        'test_time': test_time_list,
        'landmarks': landmarks
    }, ["nb_iter={},cv={}".format(ITER, 3)], PATH + ".csv")
コード例 #2
0
                                               7), labels[train_val_inds]
    models = train_svm_per_view(train_val_x, train_val_y, 17, 7, best_C)
    print(best_C)

    t3 = time.time()
    print("training time:", t3 - t2)

    test_x, test_y = get_view_blocks(dist_matrices, test_inds, train_val_inds,
                                     7), labels[test_inds]
    pred = predict_svm_per_view(test_x, test_y, 7, models)

    t4 = time.time()
    print("testing time:", t4 - t3)

    accuracies.append(accuracy_score(pred, test_y) * 100)
    train_times.append(t3 - t2)
    test_times.append(t4 - t3)

    # acc_list.append(mean(mean_accuracies))
    # std_list.append(stdev(mean_accuracies))
    # train_time_list.append(mean(train_times))
    # test_time_list.append(mean(test_times))

dict_to_csv(
    {
        'accuracy': mean(accuracies),
        'error': stdev(accuracies),
        'train_time': mean(train_times),
        'test_time': mean(test_times)
    }, ["nb_iter={},cv={}".format(1, 3)], PATH + ".csv")
コード例 #3
0
        t2 = time.time()
        print("tuning time:", t2-t1)

        # training
        train_val_inds = np.hstack((train_inds,val_inds))
        k_train_val_x = get_view_dict(k_x[np.ix_(train_val_inds,train_val_inds)])
        model = train(k_train_val_x, y[train_val_inds], best_C)

        t3 = time.time()
        print("training time:", t3-t2)

        test_inds = np.arange(len(test_y))+len(y)
        k_test_x = get_view_dict(k_x[np.ix_(test_inds,train_val_inds)])

        pred = predict(k_test_x, test_y, model)

        t4 = time.time()
        print("testing time:", t4-t3)

        acc = accuracy_score(pred, test_y)*100
        print(acc)
        accuracies.append(acc)
        times.append(t10-t0)

    acc_list.append(mean(accuracies))
    std_list.append(stdev(accuracies))
    time_list.append(mean(times))

dict_to_csv({'accuracy':acc_list,'error':std_list,'times':time_list,'ratios':ratios_missing},["nb_iter={},cv={}".format(ITER,3)],PATH+".csv")
コード例 #4
0
    # training

    train_val_x = get_view_dict(get_kernels(X, X, kernel=rbf_kernel))
    mvml = one_vs_all_mvml_train(train_val_x, Y, 8, best_l, best_e, a)

    t3 = time.time()
    print("training time:", t3 - t2)

    test_x = get_view_dict(get_kernels(test_X, X, kernel=rbf_kernel))

    pred = one_vs_all_mvml_predict(test_x, mvml)
    p_acc = accuracy_score(test_Y, pred)

    t4 = time.time()
    print("testing time:", t4 - t3)

    acc_list.append(p_acc * 100)
    std_list.append(0.)
    train_time_list.append(t3 - t2)
    test_time_list.append(t4 - t3)

dict_to_csv(
    {
        'accuracy': acc_list,
        'error': std_list,
        'train_time': train_time_list,
        'test_time': test_time_list,
        'rank': appr_levels
    }, ["nb_iter={},cv={}".format(ITER, CV)], PATH + ".csv")