コード例 #1
0
def main():
    graph, sess = load_graph(FLAGS.pre_trained_model_path)
    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, FLAGS.width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, FLAGS.height)
    mp = _mp.get_context("spawn")
    v = mp.Value('i', 0)
    lock = mp.Lock()
    process = mp.Process(target=mario, args=(v, lock))
    process.start()
    while True:
        key = cv2.waitKey(10)
        if key == ord("q"):
            break
        _, frame = cap.read()
        frame = cv2.flip(frame, 1)
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        boxes, scores, classes = detect_hands(frame, graph, sess)
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        results = predict(boxes, scores, classes, FLAGS.threshold, FLAGS.width, FLAGS.height)

        if len(results) == 1:
            x_min, x_max, y_min, y_max, category = results[0]
            x = int((x_min + x_max) / 2)
            y = int((y_min + y_max) / 2)
            cv2.circle(frame, (x, y), 5, RED, -1)

            if category == "Open" and x <= FLAGS.width / 3:
                action = 7  # Left jump
                text = "Jump left"
            elif category == "Closed" and x <= FLAGS.width / 3:
                action = 6  # Left
                text = "Run left"
            elif category == "Open" and FLAGS.width / 3 < x <= 2 * FLAGS.width / 3:
                action = 5  # Jump
                text = "Jump"
            elif category == "Closed" and FLAGS.width / 3 < x <= 2 * FLAGS.width / 3:
                action = 0  # Do nothing
                text = "Stay"
            elif category == "Open" and x > 2 * FLAGS.width / 3:
                action = 2  # Right jump
                text = "Jump right"
            elif category == "Closed" and x > 2 * FLAGS.width / 3:
                action = 1  # Right
                text = "Run right"
            else:
                action = 0
                text = "Stay"
            with lock:
                v.value = action
            cv2.putText(frame, "{}".format(text), (x_min, y_min - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, GREEN, 2)
        overlay = frame.copy()
        cv2.rectangle(overlay, (0, 0), (int(FLAGS.width / 3), FLAGS.height), ORANGE, -1)
        cv2.rectangle(overlay, (int(2 * FLAGS.width / 3), 0), (FLAGS.width, FLAGS.height), ORANGE, -1)
        cv2.addWeighted(overlay, FLAGS.alpha, frame, 1 - FLAGS.alpha, 0, frame)
        cv2.imshow('Detection', frame)

    cap.release()
    cv2.destroyAllWindows()
コード例 #2
0
def main():
    graph, sess = load_graph(FLAGS.pre_trained_model_path)
    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, FLAGS.width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, FLAGS.height)
    mp = _mp.get_context("spawn")
    v = mp.Value('i', 0)
    lock = mp.Lock()
    process = mp.Process(target=battle_city, args=(v, lock))
    process.start()
    x_center = int(FLAGS.width / 2)
    y_center = int(FLAGS.height / 2)
    radius = int(min(FLAGS.width, FLAGS.height) / 6)
    while True:
        key = cv2.waitKey(10)
        if key == ord("q"):
            break
        _, frame = cap.read()
        frame = cv2.flip(frame, 1)
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        boxes, scores, classes = detect_hands(frame, graph, sess)
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        results = predict(boxes, scores, classes, FLAGS.threshold, FLAGS.width, FLAGS.height)
        if len(results) == 1:
            x_min, x_max, y_min, y_max, category = results[0]
            x = int((x_min + x_max) / 2)
            y = int((y_min + y_max) / 2)
            cv2.circle(frame, (x, y), 5, RED, -1)
            if category == "Closed" and np.linalg.norm((x - x_center, y - y_center)) <= radius:
                action = 0 # Stay
                text = "Stay"
            elif category == "Closed" and is_in_triangle((x, y), [(0, 0), (FLAGS.width, 0),
                                                                  (x_center, y_center)]):
                action = 1  # Up
                text = "Up"
            elif category == "Closed" and is_in_triangle((x, y), [(0, FLAGS.height),
                                                                  (FLAGS.width, FLAGS.height), (x_center, y_center)]):
                action = 2  # Down
                text = "Down"
            elif category == "Closed" and is_in_triangle((x, y), [(0, 0),
                                                                  (0, FLAGS.height),
                                                                  (x_center, y_center)]):
                action = 3  # Left
                text = "Left"
            elif category == "Closed" and is_in_triangle((x, y), [(FLAGS.width, 0), (FLAGS.width, FLAGS.height),
                                                                  (x_center, y_center)]):
                action = 4  # Right
                text = "Right"
            elif category == "Open":
                action = 5  # Fire
                text = "Fire"
            else:
                action = 0
                text = "Stay"
            with lock:
                v.value = action
            cv2.putText(frame, "{}".format(text), (x_min, y_min - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, GREEN, 2)

        overlay = frame.copy()
        cv2.drawContours(overlay, [np.array([(0, 0), (FLAGS.width, 0), (x_center, y_center)])], 0,
                         CYAN, -1)
        cv2.drawContours(overlay, [
            np.array([(0, FLAGS.height), (FLAGS.width, FLAGS.height), (x_center, y_center)])], 0,
                         CYAN, -1)
        cv2.drawContours(overlay, [
            np.array([(0, 0), (0, FLAGS.height), (x_center, y_center)])], 0,
                         YELLOW, -1)
        cv2.drawContours(overlay, [np.array([(FLAGS.width, 0), (FLAGS.width, FLAGS.height), (x_center, y_center)])], 0,
                         YELLOW, -1)
        cv2.circle(overlay, (x_center, y_center), radius, BLUE, -1)
        cv2.addWeighted(overlay, FLAGS.alpha, frame, 1 - FLAGS.alpha, 0, frame)

        cv2.imshow('Detection', frame)

    cap.release()
    cv2.destroyAllWindows()
コード例 #3
0
def main():
    graph, sess = load_graph(FLAGS.pre_trained_model_path)

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, FLAGS.width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, FLAGS.height)

    mp = _mp.get_context("spawn")
    v = mp.Value('i', 0)
    lock = mp.Lock()
    process = mp.Process(target=mimic, args=(v, lock))
    process.start()

    x_center = int(FLAGS.width / 2)
    y_center = int(FLAGS.height / 2)
    radius = int(min(FLAGS.width, FLAGS.height) / 4)

    while True:
        key = cv2.waitKey(10)
        if key == ord("q"):
            break
        _, frame = cap.read()
        frame = cv2.flip(frame, 1)
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        boxes, scores, classes = detect_hands(frame, graph, sess)
        results = predict(boxes, scores, classes, FLAGS.threshold, FLAGS.width,
                          FLAGS.height)
        text = "Oof"

        top_left_square_corr = np.array([(0, 0), (FLAGS.width // 3, 0),
                                         (FLAGS.width // 3, FLAGS.height // 2),
                                         (0, FLAGS.height // 2)])
        bottom_left_square_corr = np.array([(0, FLAGS.height),
                                            (0, FLAGS.height // 2),
                                            (FLAGS.width // 3,
                                             FLAGS.height // 2),
                                            (FLAGS.width // 3, FLAGS.height)])
        bottom_right_square_corr = np.array([
            (FLAGS.width, FLAGS.height),
            (FLAGS.width - FLAGS.width // 3, FLAGS.height),
            (FLAGS.width - FLAGS.width // 4, FLAGS.height - FLAGS.height // 3),
            (FLAGS.width, FLAGS.height - FLAGS.height // 3)
        ])
        top_right_square_corr = np.array([(FLAGS.width, 0),
                                          (FLAGS.width - FLAGS.width // 4, 0),
                                          (FLAGS.width - FLAGS.width // 4,
                                           FLAGS.height // 3),
                                          (FLAGS.width, FLAGS.height // 3)])

        if len(results) == 1:
            x_min, x_max, y_min, y_max, category = results[0]
            x = int((x_min + x_max) / 2)
            y = int((y_min + y_max) / 2)
            cv2.circle(frame, (x, y), 10, RED, -1)

            if category == "Open" and np.linalg.norm(
                (x - x_center, y - y_center)) <= radius:
                action = 1
                text = action
            elif category == "Open" and is_in_square(
                (x, y), top_left_square_corr):
                action = 3
                text = action
            elif category == "Open" and is_in_square(
                (x, y), top_right_square_corr):
                action = 2
                text = action
            elif category == "Closed" and is_in_square(
                (x, y), bottom_right_square_corr):
                action = 4
                text = action
            else:
                action = 0
            with lock:
                v.value = action
            cv2.putText(frame, "{}".format(text), (x_min, y_min - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, GREEN, 2)
        overlay = frame.copy()
        height = FLAGS.height // 3
        width = FLAGS.width // 3

        cv2.drawContours(overlay, [top_left_square_corr], 0, CYAN, -1)
        cv2.drawContours(overlay, [bottom_right_square_corr], 0, RED, -1)
        cv2.drawContours(overlay, [bottom_left_square_corr], 0, GREEN, -1)
        cv2.drawContours(overlay, [top_right_square_corr], 0, YELLOW, -1)
        cv2.circle(overlay, (x_center, y_center), radius, BLUE, -1)
        cv2.addWeighted(overlay, FLAGS.alpha, frame, 1 - FLAGS.alpha, 0, frame)
        cv2.imshow('Detection', frame)

    cap.release()
    cv2.destroyAllWindows()
コード例 #4
0
import numpy as np
import cv2
import math
from tkinter import *
import threading
import tensorflow as tf
from src.utils import load_graph, detect_hands, predict


#VISION SETTINGS
def nothing(x):
    pass


font = cv2.FONT_HERSHEY_SIMPLEX
graph, sess = load_graph("src/pretrained_model.pb")


def keypress(p):
    y = p[1]
    x = p[0]
    if y >= 100 and y <= 150:
        if x >= 330 and x <= 380:
            pyautogui.typewrite('A')
        elif x >= 380 and x <= 430:
            pyautogui.typewrite('B')
        elif x >= 430 and x <= 480:
            pyautogui.typewrite('C')
        elif x >= 480 and x <= 530:
            pyautogui.typewrite('D')
        elif x >= 530 and x <= 580:
コード例 #5
0
                                  p=args["p"],
                                  model=args["model"],
                                  max_hop=3,
                                  no_simulations=1)
        nodes = filter_best_spread_nodes(G, best_nodes, error, filter_function)

    nodes = filter_min_degree_nodes(G, args["min_degree"], nodes)

    return nodes


if __name__ == "__main__":
    args = read_arguments()

    # load graph
    G = load_graph(args["g_file"], args["g_type"], args["g_nodes"],
                   args["g_new_edges"], args["g_seed"])

    prng = random.Random(args["random_seed"])

    # load mutation function
    mutation_operator = None
    mutators_to_alterate = []
    if args["mutators_to_alterate"] is not None:
        for m in args["mutators_to_alterate"]:
            mutators_to_alterate.append(getattr(mutators, m))
    if args["mutation_operator"] == "adaptive_mutations":
        mutation_operator = mutators.ea_adaptive_mutators_alteration
    else:
        mutation_operator = getattr(mutators, args["mutation_operator"])

    if mutation_operator == mutators.ea_local_activation_mutation \
コード例 #6
0
    spread_function = monte_carlo
    spread_function_name = "monte_carlo"
    models = ["IC", "WC"]

    # output directories
    degree_dist_dir = "../experiments/datasets/degree_distributions/"
    datasets_dir = "../experiments/datasets/"
    ground_truth_dir = "../experiments/ground_truth/"

    # compute the ground truth for each seed set size
    for k in K:

        for dataset_name in dataset_names:

            max_trials = 100
            G = load_graph(g_type=dataset_name)
            prng = random.Random(seed)
            if community:
                G_sampled1 = sampler.random_walk_sampling_with_fly_back(
                    G, nodes / 2, 0.15, prng)
                G_sampled2 = sampler.random_walk_sampling_with_fly_back(
                    G, nodes / 2, 0.15, prng)
                # compose two graphs together
                G_sampled = nx.compose(G_sampled1, G_sampled2)
                # while nodes in common keep sampling
                while len(G_sampled) < nodes and max_trials > 0:
                    G_sampled1 = sampler.random_walk_sampling_with_fly_back(
                        G, nodes / 2, 0.15, prng)
                    G_sampled2 = sampler.random_walk_sampling_with_fly_back(
                        G, nodes / 2, 0.15, prng)
                    # compose two graphs together
コード例 #7
0
def main():
    """Load the graph, create the embeddings, evaluate them with link prediction and save the results."""

    args = parse_args()

    graph = utils.load_graph(args.weighted, args.directed, args.input)
    utils.print_graph_info(graph, "original graph")

    graph.remove_nodes_from(list(nx.isolates(graph)))
    utils.print_graph_info(graph, "graph without isolates")

    edge_splitter_test = EdgeSplitter(graph)

    graph_test, X_test_edges, y_test = edge_splitter_test.train_test_split(
        p=args.test_percentage, method="global")

    edge_splitter_train = EdgeSplitter(graph_test, graph)
    graph_train, X_edges, y = edge_splitter_train.train_test_split(
        p=args.train_percentage, method="global")
    X_train_edges, X_model_selection_edges, y_train, y_model_selection = train_test_split(
        X_edges, y, train_size=0.75, test_size=0.25)

    logger.info(f'\nEmbedding algorithm started.')
    start = time.time()

    embedding.create_embedding(args, graph_train)
    time_diff = time.time() - start
    logger.info(f'\nEmbedding algorithm finished in {time_diff:.2f} seconds.')

    embeddings = utils.load_embedding(args.output)

    logger.info(f'\nEmbedding evaluation started.')
    start = time.time()
    results = evaluation.evaluate(args.classifier, embeddings, X_train_edges,
                                  y_train, X_model_selection_edges,
                                  y_model_selection)

    time_diff = time.time() - start
    logger.info(f'Embedding evaluation finished in {time_diff:.2f} seconds.')

    best_result = max(results, key=lambda result: result["roc_auc"])

    logger.info(
        f"\nBest roc_auc_score on train set using '{best_result['binary_operator'].__name__}': {best_result['roc_auc']}."
    )

    logger.info(f'\nEmbedding algorithm started.')
    start = time.time()

    embedding.create_embedding(args, graph_test)
    time_diff = time.time() - start
    logger.info(f'\nEmbedding algorithm finished in {time_diff:.2f} seconds.')

    embedding_test = utils.load_embedding(args.output)

    roc_auc, average_precision, accuracy, f1 = evaluation.evaluate_model(
        best_result["classifier"], embedding_test,
        best_result["binary_operator"], X_test_edges, y_test)

    logger.info(
        f"Scores on test set using '{best_result['binary_operator'].__name__}'."
    )
    logger.info(f"roc_auc_score: {roc_auc}")
    logger.info(f"average_precision_score: {average_precision}")
    logger.info(f"accuracy_score: {accuracy}")
    logger.info(f"f1_score on test set using: {f1}\n")

    if (args.results):
        evaluation.save_evaluation_results(
            args.dataset, args.method, args.classifier,
            (roc_auc, average_precision, accuracy, f1), args.results)