コード例 #1
0
        hatch_dict = None
    return classlin_labels, color_dict, hatch_dict


lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
classlin_labels, color_dict, hatch_dict = augment_classes(
    class_labels, lineage_labels)

# TODO then sort all of them by proportion of sensory/motor
# barplot by merge class and lineage
_, _, order = barplot_text(
    partition,
    classlin_labels,
    color_dict=color_dict,
    plot_proportions=False,
    norm_bar_width=True,
    figsize=(24, 18),
    title=title,
    hatch_dict=hatch_dict,
    return_order=True,
)
stashfig(basename + "barplot-mergeclasslin-props")
plt.close()
category_order = np.unique(partition)[order]

fig, axs = barplot_text(
    partition,
    class_labels,
    color_dict=color_dict,
    plot_proportions=False,
    norm_bar_width=True,
コード例 #2
0
def run_experiment(seed=None, graph_type=None, threshold=None, param_key=None):
    np.random.seed(seed)
    if BLIND:
        temp_param_key = param_key.replace(
            " ", "")  # don't want spaces in filenames
        savename = f"{temp_param_key}-cell-types-"
        title = param_key
    else:
        savename = f"{graph_type}-t{threshold}-cell-types"
        title = f"{graph_type}, threshold = {threshold}"

    mg = load_metagraph(graph_type, version=VERSION)

    # simple threshold
    # TODO they will want symmetric threshold...
    # TODO maybe make that a parameter
    adj = mg.adj.copy()
    adj[adj <= threshold] = 0
    meta = mg.meta.copy()
    meta = pd.DataFrame(mg.meta["neuron_name"])
    mg = MetaGraph(adj, meta)

    # run the graphtool code
    temp_loc = f"maggot_models/data/interim/temp-{param_key}.graphml"
    block_series = run_minimize_blockmodel(mg, temp_loc)

    # manage the output
    mg = load_metagraph(graph_type, version=VERSION)
    mg.meta = pd.concat((mg.meta, block_series), axis=1)
    mg.meta["Original index"] = range(len(mg.meta))
    keep_inds = mg.meta[~mg.meta["block_label"].isna(
    )]["Original index"].values
    mg.reindex(keep_inds)
    if graph_type != "G":
        mg.verify(10000, graph_type=graph_type, version=VERSION)

    # deal with class labels
    lineage_labels = mg.meta["lineage"].values
    lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
    class_labels = mg["Merge Class"]
    skeleton_labels = mg.meta.index.values
    classlin_labels, color_dict, hatch_dict = augment_classes(
        skeleton_labels, class_labels, lineage_labels)
    block_label = mg["block_label"].astype(int)

    # barplot with unknown class labels merged in, proportions
    _, _, order = barplot_text(
        block_label,
        classlin_labels,
        norm_bar_width=True,
        color_dict=color_dict,
        hatch_dict=hatch_dict,
        title=title,
        figsize=(24, 18),
        return_order=True,
    )
    stashfig(savename + "barplot-mergeclasslin-props")
    category_order = np.unique(block_label)[order]

    # barplot with regular class labels
    barplot_text(
        block_label,
        class_labels,
        norm_bar_width=True,
        color_dict=color_dict,
        hatch_dict=hatch_dict,
        title=title,
        figsize=(24, 18),
        category_order=category_order,
    )
    stashfig(savename + "barplot-mergeclass-props")

    # barplot with unknown class labels merged in, counts
    barplot_text(
        block_label,
        classlin_labels,
        norm_bar_width=False,
        color_dict=color_dict,
        hatch_dict=hatch_dict,
        title=title,
        figsize=(24, 18),
        return_order=True,
        category_order=category_order,
    )
    stashfig(savename + "barplot-mergeclasslin-counts")

    # barplot of hemisphere membership
    fig, ax = plt.subplots(1, 1, figsize=(10, 20))
    stacked_barplot(
        block_label,
        mg["Hemisphere"],
        norm_bar_width=True,
        category_order=category_order,
        ax=ax,
    )
    remove_spines(ax)
    stashfig(savename + "barplot-hemisphere")

    # plot block probability matrix
    counts = False
    weights = False
    prob_df = get_blockmodel_df(mg.adj,
                                block_label,
                                return_counts=counts,
                                use_weights=weights)
    prob_df = prob_df.reindex(order, axis=0)
    prob_df = prob_df.reindex(order, axis=1)
    ax = probplot(100 * prob_df,
                  fmt="2.0f",
                  figsize=(20, 20),
                  title=title,
                  font_scale=0.4)
    stashfig(savename + "probplot")
    block_series.name = param_key
    return block_series
コード例 #3
0
            basename = f"louvain-res{r}-t{thresh}-{graph_type}-"
            title = f"Louvain, {graph_type}, res = {r}, thresh = {thresh}"

            # barplot by merge class label (more detail)
            class_label_dict = nx.get_node_attributes(g_sym, "Merge Class")
            class_labels = np.array(
                itemgetter(*skeleton_labels)(class_label_dict))
            # part_color_dict = dict(zip(np.unique(partition), cc.glasbey_warm))
            # true_color_dict = dict(zip(names, colors))
            # color_dict = {**part_color_dict, **true_color_dict}
            fig, axs = barplot_text(
                partition,
                class_labels,
                # color_dict=color_dict,
                plot_proportions=False,
                norm_bar_width=True,
                category_order=sort_partition_sf.index.values,
                figsize=(24, 18),
                title=title,
            )
            axs[0].set_ylabel(r"Median signal flow $\to$", fontsize=28)
            stashfig(basename + "barplot-mergeclass")

            # sorted heatmap
            heatmap(
                mg.adj,
                transform="simple-nonzero",
                figsize=(20, 20),
                inner_hier_labels=partition,
                hier_label_fontsize=10,
                title=title,
コード例 #4
0
        if ymax > ytop:
            ax.set_ylim([-1, ymax + 1])
    ax.set_xticks([])
    ax.set_yticks([])


pg.map_offdiag(tweak)
stashfig("pairs-all-hop-hist-pred", dpi=300)
plt.close()
# %% [markdown]
# ##

from src.visualization import barplot_text

barplot_text(pred_labels,
             meta["merge_class"].values,
             color_dict=CLASS_COLOR_DICT)
stashfig("agmm-barplot")
# %% [markdown]
# ## Per known class, plot a rugplot of fwd visit, backwards visit, for odor to
# one of the backwards channels

# %% [markdown]
# ## swarmplots, color by class

# %% [markdown]
# ## Look at some of the individual pathways

source_inds = row_meta[row_meta["source"] == "Odor"].index
mini_hop_hist = hop_hist[source_inds, :]
mini_row_meta = row_meta.iloc[source_inds].copy()
コード例 #5
0
def run_experiment(graph_type=None,
                   threshold=None,
                   res=None,
                   binarize=None,
                   seed=None,
                   param_key=None):
    # common names
    if BLIND:
        basename = f"{param_key}-"
        title = param_key
    else:
        basename = f"louvain-res{res}-t{threshold}-{graph_type}-"
        title = f"Louvain, {graph_type}, res = {res}, threshold = {threshold}"

    np.random.seed(seed)

    # load and preprocess the data
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    mg = preprocess(
        mg,
        threshold=threshold,
        sym_threshold=True,
        remove_pdiff=True,
        binarize=binarize,
    )
    g_sym = nx.to_undirected(mg.g)
    skeleton_labels = np.array(list(g_sym.nodes()))
    partition, modularity = run_louvain(g_sym, res, skeleton_labels)

    partition_series = pd.Series(partition, index=skeleton_labels)
    partition_series.name = param_key

    if SAVEFIGS:
        # get out some metadata
        class_label_dict = nx.get_node_attributes(g_sym, "Merge Class")
        class_labels = np.array(itemgetter(*skeleton_labels)(class_label_dict))
        lineage_label_dict = nx.get_node_attributes(g_sym, "lineage")
        lineage_labels = np.array(
            itemgetter(*skeleton_labels)(lineage_label_dict))
        lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
        classlin_labels, color_dict, hatch_dict = augment_classes(
            class_labels, lineage_labels)

        # TODO then sort all of them by proportion of sensory/motor
        # barplot by merge class and lineage
        _, _, order = barplot_text(
            partition,
            classlin_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=True,
            figsize=(24, 18),
            title=title,
            hatch_dict=hatch_dict,
            return_order=True,
        )
        stashfig(basename + "barplot-mergeclasslin-props")
        category_order = np.unique(partition)[order]

        fig, axs = barplot_text(
            partition,
            class_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=True,
            figsize=(24, 18),
            title=title,
            hatch_dict=None,
            category_order=category_order,
        )
        stashfig(basename + "barplot-mergeclass-props")
        fig, axs = barplot_text(
            partition,
            class_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=False,
            figsize=(24, 18),
            title=title,
            hatch_dict=None,
            category_order=category_order,
        )
        stashfig(basename + "barplot-mergeclass-counts")

        # TODO add gridmap

        counts = False
        weights = False
        prob_df = get_blockmodel_df(mg.adj,
                                    partition,
                                    return_counts=counts,
                                    use_weights=weights)
        prob_df = prob_df.reindex(category_order, axis=0)
        prob_df = prob_df.reindex(category_order, axis=1)
        probplot(100 * prob_df,
                 fmt="2.0f",
                 figsize=(20, 20),
                 title=title,
                 font_scale=0.7)
        stashfig(basename + f"probplot-counts{counts}-weights{weights}")

    return partition_series, modularity
コード例 #6
0
def run_experiment(graph_type=None, thresh=None, res=None):
    # load and preprocess the data
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    edgelist = mg.to_edgelist()
    edgelist = add_max_weight(edgelist)
    edgelist = edgelist[edgelist["max_weight"] > thresh]
    mg = edgelist_to_mg(edgelist, mg.meta)
    mg = mg.make_lcc()
    mg = mg.remove_pdiff()
    g_sym = nx.to_undirected(mg.g)
    skeleton_labels = np.array(list(g_sym.nodes()))
    partition = run_louvain(g_sym, res, skeleton_labels)

    # compute signal flow for sorting purposes
    mg.meta["signal_flow"] = signal_flow(mg.adj)
    mg.meta["partition"] = partition
    partition_sf = mg.meta.groupby("partition")["signal_flow"].median()
    sort_partition_sf = partition_sf.sort_values(ascending=False)

    # common names
    basename = f"louvain-res{res}-t{thresh}-{graph_type}-"
    title = f"Louvain, {graph_type}, res = {res}, thresh = {thresh}"

    # get out some metadata
    class_label_dict = nx.get_node_attributes(g_sym, "Merge Class")
    class_labels = np.array(itemgetter(*skeleton_labels)(class_label_dict))
    lineage_label_dict = nx.get_node_attributes(g_sym, "lineage")
    lineage_labels = np.array(itemgetter(*skeleton_labels)(lineage_label_dict))
    lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
    classlin_labels, color_dict, hatch_dict = augment_classes(
        skeleton_labels, class_labels, lineage_labels)

    # barplot by merge class and lineage
    fig, axs = barplot_text(
        partition,
        classlin_labels,
        color_dict=color_dict,
        plot_proportions=False,
        norm_bar_width=True,
        figsize=(24, 18),
        title=title,
        hatch_dict=hatch_dict,
    )
    stashfig(basename + "barplot-mergeclasslin-props")
    fig, axs = barplot_text(
        partition,
        class_labels,
        color_dict=color_dict,
        plot_proportions=False,
        norm_bar_width=True,
        figsize=(24, 18),
        title=title,
        hatch_dict=None,
    )
    stashfig(basename + "barplot-mergeclass-props")
    fig, axs = barplot_text(
        partition,
        class_labels,
        color_dict=color_dict,
        plot_proportions=False,
        norm_bar_width=False,
        figsize=(24, 18),
        title=title,
        hatch_dict=None,
    )
    stashfig(basename + "barplot-mergeclass-counts")
    fig, axs = barplot_text(
        partition,
        lineage_labels,
        color_dict=None,
        plot_proportions=False,
        norm_bar_width=True,
        figsize=(24, 18),
        title=title,
    )
    stashfig(basename + "barplot-lineage-props")

    # sorted heatmap
    heatmap(
        mg.adj,
        transform="simple-nonzero",
        figsize=(20, 20),
        inner_hier_labels=partition,
        hier_label_fontsize=10,
        title=title,
        title_pad=80,
    )
    stashfig(basename + "heatmap")

    # block probability matrices
    counts = False
    weights = False
    prob_df = get_blockmodel_df(mg.adj,
                                partition,
                                return_counts=counts,
                                use_weights=weights)
    prob_df = prob_df.reindex(sort_partition_sf.index, axis=0)
    prob_df = prob_df.reindex(sort_partition_sf.index, axis=1)
    ax = probplot(
        100 * prob_df,
        fmt="2.0f",
        figsize=(20, 20),
        title=f"Louvain, res = {res}, counts = {counts}, weights = {weights}",
    )
    ax.set_ylabel(r"Median signal flow $\to$", fontsize=28)
    stashfig(basename + f"probplot-counts{counts}-weights{weights}")

    # plot minigraph with layout
    adjusted_partition = adjust_partition(partition, class_labels)
    minigraph = to_minigraph(mg.adj,
                             adjusted_partition,
                             use_counts=True,
                             size_scaler=10)
    draw_networkx_nice(
        minigraph,
        "Spring-x",
        "Signal Flow",
        sizes="Size",
        colors="Color",
        cmap="Greys",
        vmin=100,
        weight_scale=0.001,
    )
    stashfig(basename + "sbm-drawn-network")