コード例 #1
0
def trainMulticlassBaggingModel(DataSet,VegeTypes,varnames,params,multiclassmethod,baggingmetric='kappa',baggingweightindex=1,\
                                baggingmetricthres=0.7,varlabelweights=[-1],colsamplerate=0.7,train_percent=0.75,runtimes=300,\
                                bool_autolabel=True,varlabels=[],n_varlabels=5,bool_weight=False,bool_strclass=False,labelHeaderName="",\
                                bool_save=False,savedirbase=""):
    if bool_autolabel:
        varlabels = vc.KMeansLabel(DataSet, varnames, n_varlabels=n_varlabels)
    selectruntimesvarnames = _stratifiedRandomChoice_column(
        varnames, varlabels, varlabelweights, colsamplerate, runtimes)
    evalValues = np.zeros(runtimes)
    weights = np.zeros(runtimes)
    for runtime in range(runtimes):
        savedir = savedirbase + os.sep + "runtime_" + str(runtime)
        if not os.path.exists(savedir):
            os.makedirs(savedir)
        RuntimeDataSet=xgbf.trainingDataSet(DataSet,VegeTypes,selectruntimesvarnames[runtime],\
                                            bool_strclass=bool_strclass,labelHeaderName=labelHeaderName)
        [train_x, test_x, train_y,
         test_y] = xgbf.splitTrainTestData(RuntimeDataSet,
                                           train_percent,
                                           bool_stratify=True)
        try:
            if multiclassmethod == 'softmax':
                ModelList=mlc.trainMulticlassSoftmaxModel([train_y,train_x],VegeTypes,varnames,params,runtime=runtime,bool_weight=bool_weight,\
                                                          bool_pandas=False,bool_save=bool_save,savedir=savedir)
                [pred_Y,pred_pY,test_Y]=mlc.testMulticlassSoftmaxModel(ModelList,[test_y,test_x],VegeTypes,varnames,params,runtime=runtime,\
                                                            bool_pandas=False,bool_save=bool_save,savedir=savedir)
            elif multiclassmethod == 'category':
                ModelList=mlc.trainMulticlassCategoryModel([train_y,train_x],VegeTypes,varnames,params,runtime=runtime,bool_weight=bool_weight,\
                                                           bool_pandas=False,bool_save=bool_save,savedir=savedir)
                [pred_Y,pred_pY,test_Y]=mlc.testMulticlassCategoryModel(ModelList,[test_y,test_x],VegeTypes,varnames,params,runtime=runtime,\
                                                            bool_pandas=False,bool_save=bool_save,savedir=savedir)
            else:
                print("Invalid Multiclass Method Input!")
            evalValues[runtime] = xgbf.Evaluate(test_Y, pred_Y, pred_pY,
                                                baggingmetric)
            print("Runtime: %d model done. Evaluation Value = %f" %
                  (runtime, evalValues[runtime]))
        except:
            print("Model not established!")
            evalValues[runtime] = 0.0
    weights = _calWeight(evalValues, baggingweightindex, baggingmetricthres)
    evalFiledirto = savedirbase + os.sep + "Runtime_Model_Evaluation_Weights.csv"
    init.writeArrayListToCSV([evalValues, weights], [baggingmetric, 'weight'],
                             evalFiledirto)
    #Write Each Runtime Model Variables Names
    selectvarnamesfiledir = savedirbase + os.sep + "Runtime_Model_Select_Variables.csv"
    save = pd.DataFrame({})
    for runtime in range(runtimes):
        pdtmp = pd.DataFrame({
            "SelectVarName_run" + str(runtime):
            selectruntimesvarnames[runtime]
        })
        save = pd.concat([save, pdtmp], axis=1)
    save.to_csv(selectvarnamesfiledir, index=False, header=True)
コード例 #2
0
def _trainSingleclassBaggingModel(CPIDs,DataSet,vtname,params,baggingmetric,bool_gpu,n_gpus,n_parallels,selectruntimesvarnames,\
                                  runtime,train_percent,single_thres,bool_balance,bool_strclass,labelHeaderName,bool_save,savedirbase):
    #Assign task to worker
    print("Training #%d model..." % runtime)
    params_parallel = copy.deepcopy(params)
    process_pid = os.getpid()
    if len(CPIDs) < n_parallels:
        CPIDs.append(process_pid)
    process_pid_index = CPIDs.index(process_pid)
    print("Worker #%d: PID = %d" % (process_pid_index, process_pid))
    if bool_gpu:
        params_parallel['gpu_id'] = process_pid_index % n_gpus

    #Execute model training process
    RuntimeDataSet=xgbf.trainingDataSet(DataSet,[vtname],selectruntimesvarnames[runtime],\
                                    bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_binary=True)
    [train_x, test_x, train_y,
     test_y] = xgbf.splitTrainTestData(RuntimeDataSet,
                                       train_percent,
                                       bool_stratify=1)
    if bool_balance:
        if len(train_y.shape) > 1:
            ratio = np.float(
                np.sum(train_y[:, 0] == 0)) / np.sum(train_y[:, 0] == 1)
        else:
            ratio = np.float(np.sum(train_y[:] == 0)) / np.sum(train_y[:] == 1)
        params_parallel['scale_pos_weight'] = ratio
    model = xgbf.TrainModel(train_x, train_y, params_parallel)
    savedir = savedirbase + os.sep + "runtime_" + str(runtime)
    if not os.path.exists(savedir):
        os.makedirs(savedir)
    modelName = vtname + '_xgboost_singleclass_run' + str(runtime) + ".model"
    modeldir = savedir + os.sep + modelName
    model.save_model(modeldir)
    [pred_Y, pred_pY] = xgbf.Predict(model,
                                     test_x,
                                     bool_binary=1,
                                     threshold=single_thres)
    evalValue = xgbf.Evaluate(test_y, pred_Y, pred_pY, baggingmetric)
    print("Runtime: %d model training finished. Evaluation Value = %f\n" %
          (runtime, evalValue))
    return evalValue
コード例 #3
0
def _trainMulticlassBaggingModel(CPIDs,DataSet,VegeTypes,varnames,params,multiclassmethod,bool_gpu,n_gpus,n_parallels,\
                                 selectruntimesvarnames,runtime,train_percent,baggingmetric,bool_weight,bool_strclass,labelHeaderName,\
                                 bool_save,savedirbase):
    #Assign task to worker
    print("Training #%d model..." % runtime)
    params_parallel = copy.deepcopy(params)
    process_pid = os.getpid()
    if len(CPIDs) < n_parallels:
        CPIDs.append(process_pid)
    process_pid_index = CPIDs.index(process_pid)
    print("Worker #%d: PID = %d" % (process_pid_index, process_pid))
    if bool_gpu:
        params_parallel['gpu_id'] = process_pid_index % n_gpus

    #Execute model training process
    savedir = savedirbase + os.sep + "runtime_" + str(runtime)
    if not os.path.exists(savedir):
        os.makedirs(savedir)
    RuntimeDataSet=xgbf.trainingDataSet(DataSet,VegeTypes,selectruntimesvarnames[runtime],\
                                        bool_strclass=bool_strclass,labelHeaderName=labelHeaderName)
    [train_x, test_x, train_y,
     test_y] = xgbf.splitTrainTestData(RuntimeDataSet,
                                       train_percent,
                                       bool_stratify=1)
    if multiclassmethod == 'softmax':
        ModelList=mlc.trainMulticlassSoftmaxModel([train_y,train_x],VegeTypes,varnames,params_parallel,runtime=runtime,\
                                                  bool_weight=bool_weight,bool_pandas=False,bool_save=bool_save,savedir=savedir)
        [pred_Y,pred_pY,test_Y]=mlc.testMulticlassSoftmaxModel(ModelList,[test_y,test_x],VegeTypes,varnames,params_parallel,\
                                                    runtime=runtime,bool_pandas=False,bool_save=bool_save,savedir=savedir)
    elif multiclassmethod == 'category':
        ModelList=mlc.trainMulticlassCategoryModel([train_y,train_x],VegeTypes,varnames,params_parallel,runtime=runtime,\
                                                   bool_weight=bool_weight,bool_pandas=False,bool_save=bool_save,savedir=savedir)
        [pred_Y,pred_pY,test_Y]=mlc.testMulticlassCategoryModel(ModelList,[test_y,test_x],VegeTypes,varnames,params_parallel,\
                                                    runtime=runtime,bool_pandas=False,bool_save=bool_save,savedir=savedir)
    else:
        print("Invalid Multiclass Method Input!")
    evalValue = xgbf.Evaluate(test_Y, pred_Y, pred_pY, baggingmetric)
    #    evalValues[runtime]=xgbf.Evaluate(test_Y,pred_Y,pred_pY,access_method)
    print("Runtime: %d model training finished. Evaluation Value = %f\n" %
          (runtime, evalValue))
    return evalValue
コード例 #4
0
                                                bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
    elif multiclassmethod == 'category':
        ModelList=mlc.trainMulticlassCategoryModel(TrainDataSet,VegeTypes,varnames,params,bool_weight=bool_weight,\
                                                   bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
        [pred_Y,pred_pY,test_Y]=mlc.testMulticlassCategoryModel(ModelList,TestDataSet,VegeTypes,varnames,params,\
                                                bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
    else:
        print("Invalid Multiclass Method Input!")
#%%
#Evaluate results
    evalueFolder = dirto
    xgbf.mlcEvalAndWriteResult(evalueFolder, pred_Y, pred_pY, test_Y)

    #Plot confusion matrix
    plotfiledirto = evalueFolder + os.sep + "conf_mat.png"
    plot.plot_confusion_matrix(xgbf.Evaluate(test_Y,pred_Y,pred_pY,'confmat'),VegeTypes,title='Confusion Matrix',cmap=None,normalize=False,\
                          figsize=(8, 6),fontsize=11,labelsize=11,savedir=plotfiledirto)
    #%%
    #Predict mapping results
    print("Predict region...")
    nanDefault = -9999
    [TiffList, Total] = init.generateVarialeTiffList(variableFolderdir,
                                                     varnames, postfix)
    [MatX, Driver, GeoTransform, Proj, nrow,
     ncol] = ptf.readTiffAsNumpy(TiffList)
    multiclassFolderName = "Multiclass_XGBoost_" + multiclassmethod + "_Model"
    savedir = root + os.sep + modelFolderName + os.sep + multiclassFolderName
    if multiclassmethod == 'softmax':
        pred_X = init.fomatMulticlassSoftmaxMatrix(MatX)
        pred_pY = mlc.predictMulticlassSoftmaxModelCvted(ModelList,
                                                         pred_X,
コード例 #5
0
def trainSingleclassBaggingModel(DataSet,vtname,varnames,params,baggingmetric='auc',baggingweightindex=1,\
                       baggingmetricthres=0.7,single_thres=0.5,varlabelweights=[-1],colsamplerate=0.7,\
                       train_percent=0.75,runtimes=300,bool_autolabel=True,varlabels=[],n_varlabels=5,bool_balance=True,\
                       bool_strclass=False,labelHeaderName="",bool_save=False,savedirbase=""):
    ModelList = []
    if bool_autolabel:
        varlabels = vc.KMeansLabel(DataSet, varnames, n_varlabels=n_varlabels)
    selectruntimesvarnames = _stratifiedRandomChoice_column(
        varnames, varlabels, varlabelweights, colsamplerate, runtimes)
    evalValues = np.zeros(runtimes)
    for runtime in range(runtimes):
        RuntimeDataSet=xgbf.trainingDataSet(DataSet,[vtname],selectruntimesvarnames[runtime],\
                                            bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_binary=True)
        [train_x, test_x, train_y,
         test_y] = xgbf.splitTrainTestData(RuntimeDataSet,
                                           train_percent,
                                           bool_stratify=1)
        if bool_balance:
            if len(train_y.shape) > 1:
                ratio = np.float(
                    np.sum(train_y[:, 0] == 0)) / np.sum(train_y[:, 0] == 1)
            else:
                ratio = np.float(
                    np.sum(train_y[:] == 0)) / np.sum(train_y[:] == 1)
            params['scale_pos_weight'] = ratio
        model = xgbf.TrainModel(train_x, train_y, params)
        if bool_save:
            savedir = savedirbase + os.sep + "runtime_" + str(runtime)
            if not os.path.exists(savedir):
                os.makedirs(savedir)
            modelName = vtname + '_xgboost_singleclass_run' + str(
                runtime) + ".model"
            modeldir = savedir + os.sep + modelName
            model.save_model(modeldir)
        else:
            ModelList.append(model)
        [pred_Y, pred_pY] = xgbf.Predict(model,
                                         test_x,
                                         bool_binary=1,
                                         threshold=single_thres)
        evalValues[runtime] = xgbf.Evaluate(test_y, pred_Y, pred_pY,
                                            baggingmetric)
        print("Runtime: %d model done. Evaluation Value = %f" %
              (runtime, evalValues[runtime]))
    baggingweights = _calWeight(evalValues, runtimes, baggingweightindex,
                                baggingmetricthres)
    if bool_save:
        #Save Weights
        evalweightsFileName = vtname + "_Runtime_Evaluation_Weight.csv"
        evalweightsFiledirto = savedirbase + os.sep + evalweightsFileName
        evalweightsarray = np.zeros([runtimes, 2])
        evalweightsarray[:, 0] = evalValues
        evalweightsarray[:, 1] = baggingweights
        evalweightarrayname = [baggingmetric, 'weight']
        init.writeArrayToCSV(evalweightsarray, evalweightarrayname,
                             evalweightsFiledirto)
        #Save Used Parameters
        selectvarnamesfiledir = savedirbase + os.sep + vtname + "_Runtime_Model_Select_Variables.csv"
        save = pd.DataFrame({})
        for runtime in range(runtimes):
            pdtmp = pd.DataFrame({
                "SelectVarName_run" + str(runtime):
                selectruntimesvarnames[runtime]
            })
            save = pd.concat([save, pdtmp], axis=1)
        save.to_csv(selectvarnamesfiledir, index=False, header=True)
        return []
    else:
        return [ModelList, selectruntimesvarnames, baggingweights]
コード例 #6
0
                                                init.getListFromPandas(HierRelationsFiledir,labelHeaderName_L))
    #%%
    #Produce merged predicted test set
    pred_Y = hmap.predictHierUpMapping(baseMapTestResult, VegeTypes1,
                                       VegeTypes2, HierRelations)
    test_Y = hmap.predictHierUpMapping(realTestY, VegeTypes1, VegeTypes2,
                                       HierRelations)
    #Evaluate
    EvalueFolder = dirto
    xgbf.mlcEvalAndWriteResult(EvalueFolder, pred_Y, np.zeros_like(pred_Y),
                               test_Y)

    #Plot confusion matrix
    plotfiledirto = EvalueFolder + os.sep + "conf_mat.png"
    chsize = 5
    plot.plot_confusion_matrix(xgbf.Evaluate(test_Y,pred_Y,np.zeros_like(pred_Y),'confmat'),VegeTypes1,title='Confusion Matrix',cmap=None,normalize=False,\
                          figsize=(8, 6),fontsize=chsize,labelsize=chsize,savedir=plotfiledirto)

    #%%
    #Produce merged map
    print("Predict region...")
    nanDefault = -9999
    [baseMapLayer, Driver, GeoTransform, Proj, nrow,
     ncol] = ptf.readTiffAsNumpy([baseMapLayerFiledir])
    baseMapLayer = baseMapLayer[:, :, 0].astype(np.int32)

    pred_Y = hmap.predictHierUpMapping(baseMapLayer, VegeTypes1, VegeTypes2,
                                       HierRelations)

    #Write mapping results
    Filename2 = "Merging_Mapping_result" + postfix
コード例 #7
0
def evalFeature(CPIDs,evaluate_feature,TrainDataSet,ValidDataSet,VegeTypes,feature_names,multiclassmethod,params,evalue_method,\
                    bool_cv,cv_num,skf_split,bool_gpu,n_gpus,n_parallels,bool_weight,bool_strclass,labelHeaderName,bool_save,savedir):
    print("Trying to evalute feature: %s"%evaluate_feature)
    params_parallel=copy.deepcopy(params)
    process_pid=os.getpid()
    if len(CPIDs)<n_parallels:
        CPIDs.append(process_pid)
    process_pid_index=CPIDs.index(process_pid)
    print("Worker #%d: PID = %d"%(process_pid_index,process_pid))
    if bool_gpu:
        params_parallel['gpu_id']=process_pid_index%n_gpus    
    if bool_cv==1:
        [Y,X]=xgbf.trainingDataSet(TrainDataSet,VegeTypes,feature_names,\
                                    bool_strclass=bool_strclass,labelHeaderName=labelHeaderName)
        if not bool_strclass:
            class_labels=init.mergeCategories(Y)
        else:
            class_labels=Y
        pred_Y_cv=np.zeros(len(class_labels)*cv_num,dtype=np.int32)
        pred_pY_cv=np.zeros(len(class_labels)*cv_num)
        test_Y_cv=np.zeros(len(class_labels)*cv_num,dtype=np.int32)
        last_cv_idx=0
        current_cv_idx=0
        for cv_i in range(cv_num):
            skf=StratifiedKFold(n_splits=skf_split,shuffle=True)
            cv_j=0
            for train, test in skf.split(X,class_labels):
                train_x=X[train]
                train_y=Y[train]
                test_x=X[test]
                test_y=Y[test]    
                if multiclassmethod=='softmax':
                    ModelList=mtc.trainMulticlassSoftmaxModel([train_y,train_x],VegeTypes,feature_names,params_parallel,bool_weight=bool_weight,bool_pandas=False,\
                                                              bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
                    [pred_Y,pred_pY,test_Y]=mtc.testMulticlassSoftmaxModel(ModelList,[test_y,test_x],VegeTypes,feature_names,params_parallel,bool_pandas=False,\
                                                            bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
                elif multiclassmethod=='category':
                    ModelList=mtc.trainMulticlassCategoryModel([train_y,train_x],VegeTypes,feature_names,params_parallel,bool_weight=bool_weight,bool_pandas=False,\
                                                               bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
                    [pred_Y,pred_pY,test_Y]=mtc.testMulticlassCategoryModel(ModelList,[test_y,test_x],VegeTypes,feature_names,params_parallel,bool_pandas=False,\
                                                            bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
                else:
                    print("Invalid Multiclass Method Input!")
                current_cv_idx=len(test_Y)+last_cv_idx
                pred_Y_cv[last_cv_idx:current_cv_idx]=pred_Y
#                    pred_pY_cv[last_cv_idx:current_cv_idx]=pred_pY
                test_Y_cv[last_cv_idx:current_cv_idx]=test_Y
                last_cv_idx=current_cv_idx
#                    evalues_runtime[cv_i,cv_j]=xgbf.Evaluate(test_Y,pred_Y,pred_pY,evalue_method)                    
                cv_j=cv_j+1
        evalue=xgbf.Evaluate(test_Y_cv,pred_Y_cv,pred_pY_cv,evalue_method) 
    else:
        if multiclassmethod=='softmax':
            ModelList=mtc.trainMulticlassSoftmaxModel(TrainDataSet,VegeTypes,feature_names,params_parallel,bool_weight=bool_weight,bool_pandas=True,\
                                                      bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
            [pred_Y,pred_pY,test_Y]=mtc.testMulticlassSoftmaxModel(ModelList,ValidDataSet,VegeTypes,feature_names,params_parallel,bool_pandas=True,\
                                                    bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
        elif multiclassmethod=='category':
            ModelList=mtc.trainMulticlassCategoryModel(TrainDataSet,VegeTypes,feature_names,params_parallel,bool_weight=bool_weight,bool_pandas=True,\
                                                       bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
            [pred_Y,pred_pY,test_Y]=mtc.testMulticlassCategoryModel(ModelList,ValidDataSet,VegeTypes,feature_names,params_parallel,bool_pandas=True,\
                                                    bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
        else:
            print("Invalid Multiclass Method Input!")
        evalue=xgbf.Evaluate(test_Y,pred_Y,pred_pY,evalue_method) 
    print("Feature: %s partial evalue = %f\n"%(evaluate_feature,evalue))
    return evalue
コード例 #8
0
def _estabModelAndPred(TrainDataSet,ValidDataSet,VegeTypes,feature_names,multiclassmethod,params,evalue_method,EvalueFolder,variableFolderdir,postfix,\
                           bool_predictmap,bool_weight,bool_strclass,labelHeaderName,bool_save,savedir):
    num_class=len(VegeTypes)
    #Establish Training Model
    if multiclassmethod=='softmax':
        ModelList=mtc.trainMulticlassSoftmaxModel(TrainDataSet,VegeTypes,feature_names,params,bool_weight=bool_weight,\
                                                  bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)            
        [pred_Y,pred_pY,test_Y]=mtc.testMulticlassSoftmaxModel(ModelList,ValidDataSet,VegeTypes,feature_names,params,\
                                bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
    elif multiclassmethod=='category':
        ModelList=mtc.trainMulticlassCategoryModel(TrainDataSet,VegeTypes,feature_names,params,bool_weight=bool_weight,\
                                                   bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
        [pred_Y,pred_pY,test_Y]=mtc.testMulticlassCategoryModel(ModelList,ValidDataSet,VegeTypes,feature_names,params,\
                                bool_strclass=bool_strclass,labelHeaderName=labelHeaderName,bool_save=bool_save,savedir=savedir)
    else:
        print("Invalid Multiclass Method Input!")
    
    #Write Test Results
    YArray=np.zeros([len(test_Y),2])
    YArray[:,0]=test_Y
    YArray[:,1]=pred_Y
    YFiledirto=EvalueFolder+os.sep+"Best_Feature_Real_and_Predicted_Results.csv"
    init.writeArrayToCSV(YArray,['real','predict'],YFiledirto)     
    
    #Evaluate Model and Write Result
    evalArray=np.zeros([1,2])
    evalArray[0,0]=xgbf.Evaluate(test_Y,pred_Y,pred_pY,'accuracy')
    evalArray[0,1]=xgbf.Evaluate(test_Y,pred_Y,pred_pY,'kappa')
    evalFiledirto=EvalueFolder+os.sep+"Best_Feature_Model_Evaluation_ValidDataSet.csv"
    init.writeArrayToCSV(evalArray,['accuracy','kappa'],evalFiledirto)
    
    #Find XGBoost Feature Scores
    featureScoreFiledirto=EvalueFolder+os.sep+"Feature_Scores.csv"
    model=ModelList[0]
    feature_scores=model.get_fscore()
    [feature_names,fscores]=locateFeatureScores(feature_names,feature_scores)
    init.writeArrayListToCSV([feature_names,fscores],['VariableName','FeatureScore'],featureScoreFiledirto)

    if bool_predictmap:
        #Predict Mapping Results
        print("Predict region...")
        nanDefault=-9999
        [TiffList,Total]=init.generateVarialeTiffList(variableFolderdir,feature_names,postfix)
        [MatX,Driver,GeoTransform,Proj,nrow,ncol]=ptf.readTiffAsNumpy(TiffList)
        BestFeatureProductFolder=EvalueFolder+os.sep+"Best_Features_Mapping_Results"
        if multiclassmethod=='softmax':
            pred_X=init.fomatMulticlassSoftmaxMatrix(MatX)
            pred_pY=mtc.predictMulticlassSoftmaxModelCvted(ModelList,pred_X,params,bool_save=bool_save,savedir=savedir)
            [pred_Y,pred_pY]=init.reshapeMulticlassMatrix(pred_pY,nrow,ncol,num_class,bool_onearray=False)
        elif multiclassmethod=='category':
            pred_X=init.formatMulticlassCategoryMatrix(MatX,num_class)
            pred_pY=mtc.predictMulticlassCategoryModelCvted(ModelList,pred_X,params,bool_save=bool_save,savedir=savedir)
            [pred_Y,pred_pY]=init.reshapeMulticlassMatrix(pred_pY,nrow,ncol,num_class,bool_onearray=True)
        for i in range(len(VegeTypes)):
            vtname=VegeTypes[i]
            ProductFolder=BestFeatureProductFolder+os.sep+vtname
            if not os.path.exists(ProductFolder):
                os.makedirs(ProductFolder)
            Filename1=vtname+"_xgboost_"+multiclassmethod+postfix
            ProductFiledirto1=ProductFolder+os.sep+Filename1 
            ptf.writeNumpyToTiff(pred_pY[:,:,i],Driver,GeoTransform,Proj,nrow,ncol,nanDefault,ProductFiledirto1,datatype='Float32')
        Filename2="VegeMap_XGBoost_multiclass_"+multiclassmethod+postfix
        ProductFolder=BestFeatureProductFolder
        ProductFiledirto2=ProductFolder+os.sep+Filename2
        ptf.writeNumpyToTiff(pred_Y,Driver,GeoTransform,Proj,nrow,ncol,nanDefault,ProductFiledirto2,datatype='Int16')    
    return fscores