def inference(model, data_loader, dataset_name, device, output_folder=None, use_cached=False, **kwargs): dataset = data_loader.dataset logger = logging.getLogger("SSD.inference") logger.info("Evaluating {} dataset({} images):".format( dataset_name, len(dataset))) predictions_path = os.path.join(output_folder, 'predictions.pth') if use_cached and os.path.exists(predictions_path): predictions = torch.load(predictions_path, map_location='cpu') else: predictions = compute_on_dataset(model, data_loader, device) synchronize() predictions = _accumulate_predictions_from_multiple_gpus(predictions) if not is_main_process(): return if output_folder: torch.save(predictions, predictions_path) return evaluate(dataset=dataset, predictions=predictions, output_dir=output_folder, **kwargs)
def cache_url(url, model_dir=None, progress=True): r"""Loads the Torch serialized object at the given URL. If the object is already present in `model_dir`, it's deserialized and returned. The filename part of the URL should follow the naming convention ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more digits of the SHA256 hash of the contents of the file. The hash is used to ensure unique names and to verify the contents of the file. The default value of `model_dir` is ``$TORCH_HOME/models`` where ``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be overridden with the ``$TORCH_MODEL_ZOO`` environment variable. Args: url (string): URL of the object to download model_dir (string, optional): directory in which to save the object progress (bool, optional): whether or not to display a progress bar to stderr Example: >>> cached_file = maskrcnn_benchmark.utils.model_zoo.cache_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth') """ if model_dir is None: torch_home = os.path.expanduser(os.getenv("TORCH_HOME", "~/.torch")) model_dir = os.getenv("TORCH_MODEL_ZOO", os.path.join(torch_home, "models")) if not os.path.exists(model_dir): os.makedirs(model_dir) parts = urlparse(url) filename = os.path.basename(parts.path) if filename == "model_final.pkl": # workaround as pre-trained Caffe2 models from Detectron have all the same filename # so make the full path the filename by replacing / with _ filename = parts.path.replace("/", "_") cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file) and is_main_process(): sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = HASH_REGEX.search(filename) if hash_prefix is not None: hash_prefix = hash_prefix.group(1) # workaround: Caffe2 models don't have a hash, but follow the R-50 convention, # which matches the hash PyTorch uses. So we skip the hash matching # if the hash_prefix is less than 6 characters if len(hash_prefix) < 6: hash_prefix = None download_url_to_file(url, cached_file, hash_prefix, progress=progress) synchronize() return cached_file
def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu): all_predictions = dist_util.all_gather(predictions_per_gpu) if not dist_util.is_main_process(): return # merge the list of dicts predictions = {} for p in all_predictions: predictions.update(p) # convert a dict where the key is the index in a list image_ids = list(sorted(predictions.keys())) if len(image_ids) != image_ids[-1] + 1: logger = logging.getLogger("SSD.inference") logger.warning( "Number of images that were gathered from multiple processes is not " "a contiguous set. Some images might be missing from the evaluation" ) # convert to a list predictions = [predictions[i] for i in image_ids] return predictions