with open("Output.txt", "w") as text_file:
            print(output_str, file=text_file)

        if (epoch_conf_loss + epoch_loc_loss) < min_total_loss:
            min_total_loss = epoch_conf_loss + epoch_loc_loss
            best_model_wts = copy.deepcopy(model.state_dict())
            torch.save(
                ssd_net,
                os.path.join(root_dir,
                             'ssd_net_1022_temporary_best_zoomout.pth'))
            print("saved for temporary best model: ", idx_epochs)

    print('Min Val Loss: {:4f}'.format(min_total_loss))

    model.load_state_dict(best_model_wts)
    with open("Output.txt", "w") as text_file:
        print(output_str, file=text_file)
    return model


num_classes = 3
root_dir = 'trained_model'
ssd_net = SSD(num_classes).cuda()
optimizer = optim.Adam(ssd_net.parameters())
criterion = MultiboxLoss()
ssd_net = train(ssd_net, optimizer, criterion, num_epochs=100)
torch.save(
    ssd_net,
    os.path.join(root_dir, 'ssd_net_1023_augmentation_100_zoomout_rgb.pth'))
コード例 #2
0
                                                batch_size=32,
                                                shuffle=True,
                                                num_workers=0)
# print('train items:', len(train_dataset))

idx, (bbox, label, img) = next(enumerate(train_data_loader))

# valid_dataset = csd.CityScapeDataset(train_list, False, False)
# valid_data_loader = torch.utils.data.DataLoader(valid_dataset,
#                                                 batch_size=4,
#                                                 shuffle=False,
#                                                  num_workers=0)
# print('validation items:', len(valid_dataset))

net = SSD(3)
optimizer = optim.SGD(net.parameters(),
                      lr=learning_rate,
                      momentum=0.9,
                      weight_decay=1e-4)
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
criterion = MultiboxLoss([0.1, 0.1, 0.2, 0.2])

if use_gpu:
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    net.cuda()
    criterion.cuda()

train_losses = []
valid_losses = []
itr = 0
for epoch_idx in range(0, max_epochs):
コード例 #3
0
ファイル: train.py プロジェクト: lpan18/Vehicle-Detection
if WILL_TRAIN:
    # Print key info of tensor inputs
    idx, (loc_targets, conf_targets,
          image) = next(enumerate(train_data_loader))
    print('loc_targets tensor shape:', loc_targets.shape)
    print('conf_targets tensor shape:', conf_targets.shape)
    print('image tensor shape:', image.shape)
    # Create the instance of our defined network
    net = SSD(num_classes=3)
    net.cuda()
    criterion = MultiboxLoss([0.1, 0.1, 0.2, 0.2],
                             iou_threshold=0.5,
                             neg_pos_ratio=3.0)
    # optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9, weight_decay=0.0005)
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
    train_losses = []
    valid_losses = []
    max_epochs = 50
    itr = 0

    # Train process
    for epoch_idx in range(0, max_epochs):
        for train_batch_idx, (train_loc_targets, train_conf_targets,
                              train_image) in enumerate(train_data_loader):
            itr += 1
            net.train()
            train_loc_targets = Variable(train_loc_targets.cuda().float())
            train_conf_targets = Variable(train_conf_targets.cuda().long())
            train_image = train_image.permute(0, 3, 1, 2)
            train_image = Variable(train_image.cuda().float())