def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None batch_size = 128 n_cls = 10 n_l_train_data = 100 n_train_data = 60000 dim = 100 learning_rate = 1. * 1e-3 n_epoch = 100 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/mnist/train.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/mnist/l_train.npz") u_train_path = os.path.join(home, "datasets/mnist/train.npz") test_path = os.path.join(home, "datasets/mnist/test.npz") # DataReader, Model, Optimizer, Losses data_reader = MNISTDataReader(l_train_path, u_train_path, test_path, batch_size=batch_size, n_cls=n_cls, da=False, shape=True) exp = Experiment006(device, learning_rate, act, dim) # Training loop print("# Training loop") epoch = 1 st = time.time() filename, _ = os.path.splitext(os.path.basename(__file__)) for i in range(n_iter): # Get data x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_u) # Eval if (i + 1) % iter_epoch == 0: # Get data x_l, y_l = [Variable(to_device(x, device)) \ for x in data_reader.get_l_train_batch()] loss_d_x_gen = exp.test(x_l, y_l, epoch, filename) msg = "Epoch:{},ElapsedTime:{},Loss:{}".format( epoch, time.time() - st, loss_d_x_gen.data) print(msg) exp.serialize(epoch, filename) st = time.time() epoch += 1
def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None batch_size = 128 n_cls = 10 n_l_train_data = 100 n_train_data = 60000 dim = 100 learning_rate = 1. * 1e-3 n_epoch = 100 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/mnist/train.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/mnist/l_train.npz") u_train_path = os.path.join(home, "datasets/mnist/train.npz") test_path = os.path.join(home, "datasets/mnist/test.npz") # DataReader, Model, Optimizer, Losses data_reader = MNISTDataReader(l_train_path, u_train_path, test_path, batch_size=batch_size, n_cls=n_cls, da=False, shape=True) exp = Experiment011( device, learning_rate, act, dim ) # Training loop print("# Training loop") epoch = 1 st = time.time() filename, _ = os.path.splitext(os.path.basename(__file__)) for i in range(n_iter): # Get data x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_u) # Eval if (i+1) % iter_epoch == 0: # Get data x_l, y_l = [Variable(to_device(x, device)) \ for x in data_reader.get_l_train_batch()] loss_d_x_gen = exp.test(x_l, y_l, epoch, filename) msg = "Epoch:{},ElapsedTime:{},Loss:{}".format( epoch, time.time() - st, loss_d_x_gen.data) print(msg) exp.serialize(epoch, filename) st = time.time() epoch +=1