data[:-1]) out = model.log_likelihood(data, momentum_vecs=momentum_vecs, interaction_vecs=interaction_vecs) print(out) ##################### training ############################ num_iters = 10 losses, opt = model.fit(data, num_iters=num_iters, lr=0.001, momentum_vecs=momentum_vecs, interaction_vecs=interaction_vecs) ##################### sampling ############################ print("start sampling") sample_z, sample_x = model.sample(30) #################### inference ########################### print("inferiring most likely states...") z = model.most_likely_states(data, momentum_vecs=momentum_vecs, interaction_vecs=interaction_vecs) #print("k step prediction") #x_predict = k_step_prediction_for_coupled_momentum_model(model, z, data, momentum_vecs=momentum_vecs, features=features) #x_predict = k_step_prediction(model, z, data, 10) # TODO: need to revise the k-step prediction, specifically the way to calculate the momentum
import matplotlib.pyplot as plt torch.manual_seed(0) np.random.seed(0) # test fitting K = 3 D = 2 lags= 5 trans1 = LinearTransformation(K=K, D=D, lags=lags) obs1 = ARGaussianObservation(K=K, D=D, transformation=trans1) model1 = HMM(K=K,D=D, observation=obs1) T = 100 sample_z, sample_x = model1.sample(T) model2 = HMM(K=K, D=D, observation='gaussian', observation_kwargs=dict(lags=lags)) lls, opt = model2.fit(sample_x, num_iters=2000, lr=0.001) z_infer = model2.most_likely_states(sample_x) x_predict = k_step_prediction(model2, z_infer, sample_x) plt.figure() plt.plot(x_predict[:,0], label='prediction') plt.plot(sample_x[:,0], label='truth') plt.show()
data = torch.randn(T, D, dtype=torch.float64) lags = 1 bounds = np.array([[-2, 2], [0, 1], [-2, 2], [0, 1]]) As = np.array([ np.column_stack([np.identity(D), np.zeros((D, (lags - 1) * D))]) for _ in range(K) ]) torch.manual_seed(0) np.random.seed(0) tran = LinearTransformation(K=K, D=D, lags=lags, As=As) observation = ARTruncatedNormalObservation(K=K, D=D, M=0, transformation=tran, bounds=bounds) model = HMM(K=K, D=D, M=0, observation=observation) lls = model.log_likelihood(data) print(lls) #losses_1, optimizer_1 = model_1.fit(data_1, method='adam', num_iters=2000, lr=0.001) z_1 = model.most_likely_states(data) x_predict_arr_lag1 = k_step_prediction(model, z_1, data)
momentum_vecs = MomentumTransformation._compute_momentum_vecs( data[:-1], lags=momentum_lags) out = model.log_likelihood(data, momentum_vecs=momentum_vecs) print(out) ##################### training ############################ num_iters = 10 losses, opt = model.fit(data, num_iters=num_iters, lr=0.001, momentum_vecs=momentum_vecs) ##################### sampling ############################ print("start sampling") sample_z, sample_x = model.sample(30) #################### inference ########################### print("inferiring most likely states...") z = model.most_likely_states(data, momentum_vecs=momentum_vecs) print("k step prediction") x_predict = k_step_prediction_for_momentum_model(model, z, data, momentum_vecs=momentum_vecs) #x_predict = k_step_prediction(model, z, data, 10) # TODO: need to revise the k-step prediction, specifically the way to calculate the momentum
def test_model(): torch.manual_seed(0) np.random.seed(0) T = 100 D = 4 # data = np.array([[1.0, 1.0, 1.0, 6.0], [3.0, 6.0, 8.0, 6.0], # [4.0, 7.0, 8.0, 5.0], [6.0, 7.0, 5.0, 6.0], [8.0, 2.0, 6.0, 1.0]]) data = np.random.randn(T, D) data = torch.tensor(data, dtype=torch.float64) xmax = max(np.max(data[:, 0].numpy()), np.max(data[:, 2].numpy())) xmin = min(np.min(data[:, 0].numpy()), np.min(data[:, 2].numpy())) ymax = max(np.max(data[:, 1].numpy()), np.max(data[:, 3].numpy())) ymin = min(np.min(data[:, 1].numpy()), np.min(data[:, 3].numpy())) bounds = np.array([[xmin - 1, xmax + 1], [ymin - 1, ymax + 1], [xmin - 1, xmax + 1], [ymin - 1, ymax + 1]]) def toy_feature_vec_func(s): """ :param s: self, (T, 2) :param o: other, (T, 2) :return: features, (T, Df, 2) """ corners = torch.tensor([[0, 0], [0, 8], [10, 0], [10, 8]], dtype=torch.float64) return feature_direction_vec(s, corners) K = 3 Df = 4 lags = 1 tran = UniLSTMTransformation(K=K, D=D, Df=Df, feature_vec_func=toy_feature_vec_func, lags=lags, dh=10) # observation obs = ARTruncatedNormalObservation(K=K, D=D, lags=lags, bounds=bounds, transformation=tran) # model model = HMM(K=K, D=D, observation=obs) print("calculating log likelihood") feature_vecs_a = toy_feature_vec_func(data[:-1, 0:2]) feature_vecs_b = toy_feature_vec_func(data[:-1, 2:4]) feature_vecs = (feature_vecs_a, feature_vecs_b) packed_data = get_packed_data((data[:-1]), lags=lags) model.log_likelihood(data, feature_vecs=feature_vecs, packed_data=packed_data) # fit losses, _ = model.fit(data, optimizer=None, method="adam", num_iters=50, feature_vecs=feature_vecs, packed_data=packed_data) plt.figure() plt.plot(losses) plt.show() # most-likely-z print("Most likely z...") z = model.most_likely_states(data, feature_vecs=feature_vecs, packed_data=packed_data) # prediction if data.shape[0] <= 1000: data_to_predict = data else: data_to_predict = data[-1000:] print("0 step prediction") if data.shape[0] <= 1000: data_to_predict = data else: data_to_predict = data[-1000:] x_predict = k_step_prediction_for_lstm_model(model, z, data_to_predict, feature_vecs=feature_vecs) x_predict_err = np.mean(np.abs(x_predict - data_to_predict.numpy()), axis=0) print("10 step prediction") x_predict_2 = k_step_prediction(model, z, data_to_predict, k=10) x_predict_2_err = np.mean(np.abs(x_predict_2 - data_to_predict[10:].numpy()), axis=0) # samples print("sampling...") sample_T = 5 sample_z, sample_x = model.sample(sample_T)
def test_model(): torch.manual_seed(0) np.random.seed(0) T = 5 x_grids = np.array([0.0, 5.0, 10.0]) y_grids = np.array([0.0, 4.0, 8.0]) data = np.array([[1.0, 1.0, 1.0, 6.0], [3.0, 6.0, 8.0, 6.0], [4.0, 7.0, 8.0, 5.0], [6.0, 7.0, 5.0, 6.0], [8.0, 2.0, 6.0, 1.0]]) data = torch.tensor(data, dtype=torch.float64) def toy_feature_vec_func(s): """ :param s: self, (T, 2) :param o: other, (T, 2) :return: features, (T, Df, 2) """ corners = torch.tensor([[0, 0], [0, 8], [10, 0], [10, 8]], dtype=torch.float64) return feature_direction_vec(s, corners) K = 3 D = 4 M = 0 Df = 4 bounds = np.array([[0.0, 10.0], [0.0, 8.0], [0.0, 10.0], [0.0, 8.0]]) tran = LinearGridTransformation(K=K, D=D, x_grids=x_grids, y_grids=y_grids, Df=Df, feature_vec_func=toy_feature_vec_func) obs = ARTruncatedNormalObservation(K=K, D=D, M=0, lags=1, bounds=bounds, transformation=tran) model = HMM(K=K, D=D, M=M, transition="stationary", observation=obs) model.observation.mus_init = data[0] * torch.ones( K, D, dtype=torch.float64) # calculate memory gridpoints_idx_a = tran.get_gridpoints_idx_for_batch(data[:-1, 0:2]) gridpoints_idx_b = tran.get_gridpoints_idx_for_batch(data[:-1, 2:4]) gridpoints_a = tran.get_gridpoints_for_batch(gridpoints_idx_a) gridpoints_b = tran.get_gridpoints_for_batch(gridpoints_idx_b) feature_vecs_a = toy_feature_vec_func(data[:-1, 0:2]) feature_vecs_b = toy_feature_vec_func(data[:-1, 2:4]) gridpoints_idx = (gridpoints_idx_a, gridpoints_idx_b) gridpoints = (gridpoints_a, gridpoints_b) feature_vecs = (feature_vecs_a, feature_vecs_b) # fit losses, opt = model.fit(data, optimizer=None, method='adam', num_iters=100, lr=0.01, pbar_update_interval=10, gridpoints=gridpoints, gridpoints_idx=gridpoints_idx, feature_vecs=feature_vecs) plt.figure() plt.plot(losses) plt.show() # most-likely-z print("Most likely z...") z = model.most_likely_states(data, gridpoints_idx=gridpoints_idx, feature_vecs=feature_vecs) # prediction print("0 step prediction") if data.shape[0] <= 1000: data_to_predict = data else: data_to_predict = data[-1000:] x_predict = k_step_prediction_for_lineargrid_model( model, z, data_to_predict, gridpoints_idx=gridpoints_idx, feature_vecs=feature_vecs) x_predict_err = np.mean(np.abs(x_predict - data_to_predict.numpy()), axis=0) print("2 step prediction") x_predict_2 = k_step_prediction(model, z, data_to_predict, k=2) x_predict_2_err = np.mean(np.abs(x_predict_2 - data_to_predict[2:].numpy()), axis=0) # samples sample_T = 5 sample_z, sample_x = model.sample(sample_T)
def test_model(): torch.manual_seed(0) np.random.seed(0) T = 5 x_grids = np.array([0.0, 10.0]) y_grids = np.array([0.0, 8.0]) bounds = np.array([[0.0, 10.0], [0.0, 8.0], [0.0, 10.0], [0.0, 8.0]]) data = np.array([[1.0, 1.0, 1.0, 6.0], [3.0, 6.0, 8.0, 6.0], [4.0, 7.0, 8.0, 5.0], [6.0, 7.0, 5.0, 6.0], [8.0, 2.0, 6.0, 1.0]]) data = torch.tensor(data, dtype=torch.float64) K = 3 D = 4 M = 0 obs = GPObservation(K=K, D=D, x_grids=x_grids, y_grids=y_grids, bounds=bounds, train_rs=True) correct_kerneldist_gg = torch.tensor( [[0., 0., 64., 64., 100., 100., 164., 164.], [0., 0., 64., 64., 100., 100., 164., 164.], [64., 64., 0., 0., 164., 164., 100., 100.], [64., 64., 0., 0., 164., 164., 100., 100.], [100., 100., 164., 164., 0., 0., 64., 64.], [100., 100., 164., 164., 0., 0., 64., 64.], [164., 164., 100., 100., 64., 64., 0., 0.], [164., 164., 100., 100., 64., 64., 0., 0.]], dtype=torch.float64) assert torch.all(torch.eq(correct_kerneldist_gg, obs.kernel_distsq_gg)), obs.kernel_distsq_gg log_prob_nocache = obs.log_prob(data) print("log_prob_nocache = {}".format(log_prob_nocache)) kernel_distsq_xg_a = kernel_distsq_doubled(data[:-1, 0:2], obs.inducing_points) kernel_distsq_xg_b = kernel_distsq_doubled(data[:-1, 2:4], obs.inducing_points) correct_kernel_distsq_xg_a = torch.tensor( [[2., 2., 50., 50., 82., 82., 130., 130.], [2., 2., 50., 50., 82., 82., 130., 130.], [45., 45., 13., 13., 85., 85., 53., 53.], [45., 45., 13., 13., 85., 85., 53., 53.], [65., 65., 17., 17., 85., 85., 37., 37.], [65., 65., 17., 17., 85., 85., 37., 37.], [85., 85., 37., 37., 65., 65., 17., 17.], [85., 85., 37., 37., 65., 65., 17., 17.]], dtype=torch.float64) assert torch.all(torch.eq(correct_kernel_distsq_xg_a, kernel_distsq_xg_a)), kernel_distsq_xg_a memory_kwargs = dict(kernel_distsq_xg_a=kernel_distsq_xg_a, kernel_distsq_xg_b=kernel_distsq_xg_b) log_prob = obs.log_prob(data, **memory_kwargs) print("log_prob = {}".format(log_prob)) assert torch.all(torch.eq(log_prob_nocache, log_prob)) Sigma_a, A_a = obs.get_gp_cache(data[:-1, 0:2], 0, **memory_kwargs) Sigma_b, A_b = obs.get_gp_cache(data[:-1, 2:4], 1, **memory_kwargs) memory_kwargs_2 = dict(Sigma_a=Sigma_a, A_a=A_a, Sigma_b=Sigma_b, A_b=A_b) print("calculating log prob 2...") log_prob2 = obs.log_prob(data, **memory_kwargs_2) assert torch.all(torch.eq(log_prob, log_prob2)) model = HMM(K=K, D=D, M=M, transition="stationary", observation=obs) model.observation.mus_init = data[0] * torch.ones( K, D, dtype=torch.float64) # fit losses, opt = model.fit(data, optimizer=None, method='adam', num_iters=100, lr=0.01, pbar_update_interval=10, **memory_kwargs) plt.figure() plt.plot(losses) plt.show() # most-likely-z print("Most likely z...") z = model.most_likely_states(data, **memory_kwargs) # prediction print("0 step prediction") if data.shape[0] <= 1000: data_to_predict = data else: data_to_predict = data[-1000:] x_predict = k_step_prediction_for_gpmodel(model, z, data_to_predict, **memory_kwargs) x_predict_err = np.mean(np.abs(x_predict - data_to_predict.numpy()), axis=0) print("2 step prediction") x_predict_2 = k_step_prediction(model, z, data_to_predict, k=2) x_predict_2_err = np.mean(np.abs(x_predict_2 - data_to_predict[2:].numpy()), axis=0) # samples sample_T = 5 sample_z, sample_x = model.sample(sample_T)
obs = ARTruncatedNormalObservation(K=K, D=D, M=M, lags=momentum_lags, bounds=bounds, transformation=tran) # model model = HMM(K=K, D=D, M=M, observation=obs) log_prob = model.log_likelihood(data, masks=(masks_a, masks_b), memory_kwargs_a=m_kwargs_a, memory_kwargs_b=m_kwargs_b) log_prob_2 = model.log_likelihood(data) assert torch.eq(log_prob, log_prob_2) print(log_prob) # training print("start training...") num_iters = 10 losses, opt = model.fit(data, num_iters=num_iters, lr=0.001, masks=(masks_a, masks_b), memory_kwargs_a=m_kwargs_a, memory_kwargs_b=m_kwargs_b) # sampling print("start sampling") sample_z, sample_x = model.sample(T) # inference print("inferiring most likely states...") z = model.most_likely_states(data, masks=(masks_a, masks_b), memory_kwargs_a=m_kwargs_a, memory_kwargs_b=m_kwargs_b) print("0 step prediction") x_predict = k_step_prediction_for_grid_model(model, z, data, memory_kwargs_a=m_kwargs_a, memory_kwargs_b=m_kwargs_b) print("k step prediction") x_predict_10 = k_step_prediction(model, z, data, 10)
out = model.log_likelihood(data, momentum_vecs=momentum_vecs, features=features) print(out) ##################### training ############################ num_iters = 10 losses, opt = model.fit(data, num_iters=num_iters, lr=0.001, momentum_vecs=momentum_vecs, features=features) ##################### sampling ############################ print("start sampling") sample_z, sample_x = model.sample(30) #################### inference ########################### print("inferiring most likely states...") z = model.most_likely_states(data, momentum_vecs=momentum_vecs, features=features) print("k step prediction") x_predict = k_step_prediction_for_momentum_feature_model( model, z, data, momentum_vecs=momentum_vecs, features=features) #x_predict = k_step_prediction(model, z, data, 10) # TODO: need to revise the k-step prediction, specifically the way to calculate the momentum
optimizer = torch.optim.Adam(model.params, lr=0.001) losses = [] for i in np.arange(num_iters): optimizer.zero_grad() loss = model.loss(data) loss.backward(retain_graph=True) optimizer.step() loss = loss.detach().numpy() losses.append(loss) if i % 10 == 0: pbar.set_description('iter {} loss {:.2f}'.format(i, loss)) pbar.update(10) # check reconstruction x_reconstruct = model.sample_condition_on_zs(z, data[0]) # infer the latent states infer_z = model.most_likely_states(data) perm = find_permutation(z.numpy(), infer_z, K1=K, K2=K) model.permute(perm) hmm_z = model.most_likely_states(data) # check prediction x_predict_cond_z = k_step_prediction(model, z, data)