コード例 #1
0
ファイル: props_test.py プロジェクト: goodpupil/ssqueezepy
    def _test_N_dependence(wc0, mu0, scale0, N0, th):
        """Independent"""
        Ns = (np.array([.25, .5, 2, 4, 9]) * N0).astype('int64')
        errs = np.zeros(len(Ns))
        wavelet = Wavelet(('morlet', {'mu': mu0, 'dtype': 'float64'}))

        for i, N in enumerate(Ns):
            wc = center_frequency(wavelet, scale=scale0, N=N, kind='energy')
            errs[i] = abs(wc - wc0)

        _assert_and_viz(th, errs, Ns, 'N', "Center frequency (energy), morlet")
コード例 #2
0
ファイル: props_test.py プロジェクト: tcwltcwl/ssqueezepy
    def _test_mu_dependence(wc0, mu0, scale0, N0, th):
        """wc ~ mu"""
        mus = np.arange(mu0 + 1, 21)
        errs = np.zeros(len(mus))

        for i, mu in enumerate(mus):
            wavelet = Wavelet(('morlet', {'mu': mu}))
            wc = center_frequency(wavelet, scale=scale0, N=N0, kind='energy')
            errs[i] = abs((wc / wc0) - (mu / mu0))

        _assert_and_viz(th, errs, mus, 'mu',
                        "Center frequency (energy), morlet")
コード例 #3
0
def test_utils():
    os.environ['SSQ_GPU'] = '0'
    _ = utils.buffer(np.random.randn(20), 4, 1)

    wavelet = Wavelet(('morlet', {'mu': 6}))
    _ = wavelets.center_frequency(wavelet, viz=1)
    _ = wavelets.freq_resolution(wavelet, viz=1, scale=3, force_int=0)
    _ = wavelets.time_resolution(wavelet, viz=1)

    xh = np.random.randn(128)
    xhs = np.zeros(xh.size)
    wavelets._aifftshift_even(xh, xhs)
    wavelets._afftshift_even(xh, xhs)

    _ = utils.padsignal(xh, padlength=len(xh) * 2, padtype='symmetric')
    _ = utils.padsignal(xh, padlength=len(xh) * 2, padtype='wrap')
    x2d = np.random.randn(4, 64)
    _ = utils.padsignal(x2d, padlength=96, padtype='symmetric')

    g = np.ones((128, 200))
    utils.unbuffer(g, xh, 1, n_fft=len(xh), N=None, win_exp=0)
    utils.unbuffer(g, xh, 1, n_fft=len(xh), N=g.shape[1], win_exp=2)

    scales = utils.process_scales('log', 1024, Wavelet())
    _ = utils.find_downsampling_scale(Wavelet(),
                                      scales,
                                      method='any',
                                      viz_last=1)
    _ = utils.find_downsampling_scale(Wavelet(), scales, method='all')

    #### errors / warnings ###################################################
    pass_on_error(utils.find_max_scale, 1, 1, -1, -1)

    pass_on_error(utils.cwt_scalebounds, 1, 1, preset='etc', min_cutoff=0)
    pass_on_error(utils.cwt_scalebounds, 1, 1, min_cutoff=-1)
    pass_on_error(utils.cwt_scalebounds, 1, 1, min_cutoff=.2, max_cutoff=.1)
    pass_on_error(utils.cwt_scalebounds, 1, 1, cutoff=0)

    pass_on_error(utils.cwt_utils._assert_positive_integer, -1, 'w')

    pass_on_error(utils.infer_scaletype, 1)
    pass_on_error(utils.infer_scaletype, np.array([1]))
    pass_on_error(utils.infer_scaletype, np.array([1., 2., 5.]))

    pass_on_error(utils._process_fs_and_t, 1, np.array([1]), 2)
    pass_on_error(utils._process_fs_and_t, 1, np.array([1., 2, 4]), 3)
    pass_on_error(utils._process_fs_and_t, -1, None, 1)

    pass_on_error(utils.make_scales, 128, scaletype='banana')
    pass_on_error(utils.padsignal, np.random.randn(3, 4, 5))
コード例 #4
0
ファイル: props_test.py プロジェクト: tcwltcwl/ssqueezepy
    def _test_scale_dependence_high(wc0, mu0, scale0, N0, th):
        """wc ~ 1/scale

        High `scale` subject to more significant discretization error in
        frequency domain.
        """
        scales = 2**(np.arange(53, 81) / 8)  # [90.5, ..., 1024]
        errs = np.zeros(len(scales))
        wavelet = Wavelet(('morlet', {'mu': mu0}))

        for i, scale in enumerate(scales):
            wc = center_frequency(wavelet, scale=scale, N=N0, kind='energy')
            errs[i] = abs((wc / wc0) - (scale0 / scale))

        _assert_and_viz(th, errs, np.log2(scales), 'log2(scale)',
                        "Center frequency (energy), morlet | High scales")
コード例 #5
0
ファイル: props_test.py プロジェクト: tcwltcwl/ssqueezepy
    def _test_scale_dependence(wc0, mu0, scale0, N0, th):
        """wc ~ 1/scale

        For small `scale`, the bell is trimmed and the (energy) center frequency
        is no longer at mode/peak (both of which are also trimmed), but is
        less; we don't test these to keep code clean.
        """
        scales = 2**(np.arange(16, 53) / 8)  # [4, ..., 90.5]
        errs = np.zeros(len(scales))
        wavelet = Wavelet(('morlet', {'mu': mu0}))

        for i, scale in enumerate(scales):
            wc = center_frequency(wavelet, scale=scale, N=N0, kind='energy')
            errs[i] = abs((wc / wc0) - (scale0 / scale))

        _assert_and_viz(th, errs, np.log2(scales), 'log2(scale)',
                        "Center frequency (energy), morlet")
コード例 #6
0
def test_utils():
    _ = buffer(np.random.randn(20), 4, 1)

    wavelet = Wavelet(('morlet', {'mu': 6}))
    _ = center_frequency(wavelet, viz=1)
    _ = freq_resolution(wavelet, viz=1, scale=3, force_int=0)
    _ = time_resolution(wavelet, viz=1)

    xh = np.random.randn(128)
    xhs = np.zeros(xh.size)
    _aifftshift_even(xh, xhs)
    _afftshift_even(xh, xhs)

    _ = padsignal(xh, padlength=len(xh) * 2, padtype='symmetric')
    _ = padsignal(xh, padlength=len(xh) * 2, padtype='wrap')

    g = np.ones((128, 200))
    unbuffer(g, xh, 1, n_fft=len(xh), N=None, win_exp=0)
    unbuffer(g, xh, 1, n_fft=len(xh), N=g.shape[1], win_exp=2)

    #### errors / warnings ###################################################
    _pass_on_error(find_max_scale, 1, 1, -1, -1)

    _pass_on_error(cwt_scalebounds, 1, 1, preset='etc', min_cutoff=0)
    _pass_on_error(cwt_scalebounds, 1, 1, min_cutoff=-1)
    _pass_on_error(cwt_scalebounds, 1, 1, min_cutoff=.2, max_cutoff=.1)
    _pass_on_error(cwt_scalebounds, 1, 1, cutoff=0)

    _pass_on_error(_assert_positive_integer, -1, 'w')

    _pass_on_error(_infer_scaletype, 1)
    _pass_on_error(_infer_scaletype, np.array([1]))
    _pass_on_error(_infer_scaletype, np.array([1., 2., 5.]))

    _pass_on_error(_process_fs_and_t, 1, np.array([1]), 2)
    _pass_on_error(_process_fs_and_t, 1, np.array([1., 2, 4]), 3)
    _pass_on_error(_process_fs_and_t, -1, None, 1)

    _pass_on_error(make_scales, 128, scaletype='banana')
コード例 #7
0
ファイル: props_test.py プロジェクト: tcwltcwl/ssqueezepy
def test_energy_center_frequency():
    """If kind='energy' passes, long shot for 'peak' to fail, so just test
    former; would still be interesting to investigate 'peak' vs 'energy',
    esp. at scale extrema.
    """
    def _test_mu_dependence(wc0, mu0, scale0, N0, th):
        """wc ~ mu"""
        mus = np.arange(mu0 + 1, 21)
        errs = np.zeros(len(mus))

        for i, mu in enumerate(mus):
            wavelet = Wavelet(('morlet', {'mu': mu}))
            wc = center_frequency(wavelet, scale=scale0, N=N0, kind='energy')
            errs[i] = abs((wc / wc0) - (mu / mu0))

        _assert_and_viz(th, errs, mus, 'mu',
                        "Center frequency (energy), morlet")

    def _test_scale_dependence(wc0, mu0, scale0, N0, th):
        """wc ~ 1/scale

        For small `scale`, the bell is trimmed and the (energy) center frequency
        is no longer at mode/peak (both of which are also trimmed), but is
        less; we don't test these to keep code clean.
        """
        scales = 2**(np.arange(16, 53) / 8)  # [4, ..., 90.5]
        errs = np.zeros(len(scales))
        wavelet = Wavelet(('morlet', {'mu': mu0}))

        for i, scale in enumerate(scales):
            wc = center_frequency(wavelet, scale=scale, N=N0, kind='energy')
            errs[i] = abs((wc / wc0) - (scale0 / scale))

        _assert_and_viz(th, errs, np.log2(scales), 'log2(scale)',
                        "Center frequency (energy), morlet")

    def _test_scale_dependence_high(wc0, mu0, scale0, N0, th):
        """wc ~ 1/scale

        High `scale` subject to more significant discretization error in
        frequency domain.
        """
        scales = 2**(np.arange(53, 81) / 8)  # [90.5, ..., 1024]
        errs = np.zeros(len(scales))
        wavelet = Wavelet(('morlet', {'mu': mu0}))

        for i, scale in enumerate(scales):
            wc = center_frequency(wavelet, scale=scale, N=N0, kind='energy')
            errs[i] = abs((wc / wc0) - (scale0 / scale))

        _assert_and_viz(th, errs, np.log2(scales), 'log2(scale)',
                        "Center frequency (energy), morlet | High scales")

    def _test_N_dependence(wc0, mu0, scale0, N0, th):
        """Independent"""
        Ns = (np.array([.25, .5, 2, 4, 9]) * N0).astype('int64')
        errs = np.zeros(len(Ns))
        wavelet = Wavelet(('morlet', {'mu': mu0}))

        for i, N in enumerate(Ns):
            wc = center_frequency(wavelet, scale=scale0, N=N, kind='energy')
            errs[i] = abs(wc - wc0)

        _assert_and_viz(th, errs, Ns, 'N',
                        "Center frequency (energy), morlet")

    mu0 = 5
    scale0 = 10
    N0 = 1024

    wavelet0 = Wavelet(('morlet', {'mu': mu0}))
    wc0 = center_frequency(wavelet0, scale=scale0, N=N0, kind='energy')

    args = (wc0, mu0, scale0, N0)
    _test_mu_dependence(        *args, th=1e-7)
    _test_scale_dependence(     *args, th=1e-14)
    _test_scale_dependence_high(*args, th=1e-1)
    _test_N_dependence(         *args, th=1e-14)