コード例 #1
0
    def plot_this(ynot,tspan,ode,rp):
        sol = stablab.Struct()
        sol.t = []
        sol.y = []
        def updateSol(tVal,yVals):
            sol.t.append(tVal)
            sol.y.append(yVals)
            return None

        integrator = complex_ode(ode)
        integrator.set_integrator('dopri5',atol=1e-10,rtol=1e-10)
        integrator.set_solout(updateSol)
        integrator.set_initial_value(ynot,tspan[0])
        integrator.integrate(tspan[-1])
        sol.t, sol.y = np.array(sol.t), np.array(sol.y)
        return sol
コード例 #2
0
def RH_stable_model(p):
    """
    Rankine Hugoniot conditions
    """
    st = stablab.Struct()
    st.H_fun = H_stable_model

    st.left_H = 1e-6
    st.right_H = 1000
    st.H_ind_var = 's'
    p.tau_neg = full_gas_Hugoniot(p,st,p.S_neg)

    p.S_plus = p.S0
    p.tau_plus = p.tau0

    none = p.none
    mu = p.mu
    kappa = p.kappa

    S = p.S_neg
    tau = p.tau_neg
    press_neg = np.exp(S) / tau ** 2 - tau
    T_neg = np.exp(S) / tau
    p.T_neg = T_neg

    S = p.S_plus
    tau = p.tau_plus
    press_plus = np.exp(S) / tau ** 2 - tau
    T_plus = np.exp(S) / tau
    p.T_plus = T_plus

    p.spd = -np.sqrt((press_neg-press_plus)/(p.tau_plus-p.tau_neg))

    p.m1 = 0

    p.v_plus = -p.spd*p.tau_plus-p.m1
    p.v_neg = -p.spd*p.tau_neg-p.m1

    return p
コード例 #3
0
                np.exp(S) / tau ** 3 - 0.1e1) + tau / kappa * (-spd * (-0.2e1 *
                np.exp(S) / tau ** 2 + tau) + v_x * mu * v / tau ** 2 + T_x *
                kappa / tau ** 2 + v * (-0.3e1 * np.exp(S) / tau ** 3 - 0.1e1))) /
                spd, -lamda * v * tau / kappa, lamda * tau / kappa, v * tau /
                kappa * ((v_x * mu / tau ** 2 - 0.3e1 * np.exp(S) / tau ** 3 -
                0.1e1) / spd + spd) - tau / kappa * ((-spd * (-0.2e1 * np.exp(S) /
                tau ** 2 + tau) + v_x * mu * v / tau ** 2 + T_x * kappa /
                tau ** 2 + v * (-0.3e1 * np.exp(S) / tau ** 3 - 0.1e1)) / spd +
                spd * v + v_x * mu / tau - np.exp(S) / tau ** 2 + tau), -v /
                kappa - tau / kappa * (spd - v / tau)]
            ])
    return out

if __name__ == "__main__":
    # parameters
    s = stablab.Struct()
    p = stablab.Struct()
    #s.solve = 'ode'
    s.solve = 'bvp'

    p.S_neg = -5
    p.none = 1
    p.mu = 1
    p.kappa = 1
    p.S0 = 0
    p.tau0 = 1

    # plus and minus infinity endstates
    p = RH_stable_model(p)

    # phase condition
コード例 #4
0
def co_contour_adaptive(c, s, p, m, e, fun):

    c.lambda_steps = 0
    # initialize structures
    out = np.zeros(c.max_pts, dtype=np.complex)
    pre_imag = np.zeros(c.max_pts, dtype=np.complex)

    # Kato basis for first two points
    delh = c.first_step
    h = 0
    lamda = fun(np.linspace(h, delh, c.ksteps + 2))
    basis_L, proj_L = c.basisL(c.Lproj, c.L, lamda, s, p, c.LA, 1, c.epsl)
    basis_R, proj_R = c.basisR(c.Rproj, c.R, lamda, s, p, c.RA, -1, c.epsr)

    # compute Evans function for 1st point
    out[0] = c.evans(basis_L[:, :, 0], basis_R[:, :, 0], lamda[0], s, p, m, e)
    hit_points = c.hit_points

    cnt = 0
    temp = stablab.Struct()
    while h < 1:

        # hold on;
        # plot(real(lambda(end)),imag(lambda(end)),'.k','MarkerSize',18)
        # drawnow;
        #
        # hold on;
        # plot(real(temp.evans),imag(temp.evans),'.k','MarkerSize',18)
        # drawnow;

        temp.evans = c.evans(basis_L[:, :, -1], basis_R[:, :, -1], lamda[-1],
                             s, p, m, e)

        # check relative error of image
        rel_err = abs(temp.evans - out[cnt]) / min(abs(temp.evans),
                                                   abs(out[cnt]))

        # rel_err1 = abs(temp.evans-out(cnt))/min(abs(temp.evans),abs(out(cnt)))
        # rel_err2 = abs(conj(temp.evans)-out(cnt))/min(abs(temp.evans),abs(out(cnt)))
        # rel_err = min(rel_err1,rel_err2)
        # if rel_err2< rel_err1
        # temp.evans = conj(temp.evans)
        # end
        # E = temp.evans
        # Eold = out(cnt)

        if rel_err < c.tol:

            if 'stats' in c:
                if c.stats == 'on':
                    plt.plot(np.real(lamda[-1]), np.imag(lamda[-1]), '.k')
                    plt.show()

            if cnt + 1 > c.max_pts:
                raise ValueError('Maximum number of allowed steps exceeded.')

            h += delh
            # pred = (2/3)*c.tol*delh/rel_err;
            pred = (4 / 3) * delh

            delh = min(min(pred, c.max_step), 1 - h)

            if hit_points.size != 0:
                if h + delh > hit_points[0]:
                    delh = hit_points[0] - h
                    hit_points = hit_points[1:]

            lamda = fun(np.linspace(h, h + delh, c.ksteps + 2))
            basis_L, proj_L = c.basisL(c.Lproj, c.L, lamda, s, p, c.LA, 1,
                                       c.epsl, basis_L[:, :, -1], proj_L[:, :,
                                                                         -1])
            basis_R, proj_R = c.basisR(c.Rproj, c.R, lamda, s, p, c.RA, -1,
                                       c.epsr, basis_R[:, :, -1], proj_R[:, :,
                                                                         -1])

            cnt = cnt + 1
            out[cnt] = temp.evans

            # m.options.AbsTol = e.abs_tol*abs(temp.evans);
            # m.options.RelTol = m.options.AbsTol;

        else:
            if 'stats' in c:
                if c.stats == 'on':
                    plt.plot(np.real(lamda[-1]), np.imag(lamda[-1]), '.r')

            delh = 0.5 * delh
            if delh < c.min_step_size:
                raise ValueError(
                    'Required delh smaller than minimum step size specified')

            lamda = fun(np.linspace(h, h + delh, c.ksteps + 2))
            basis_L, proj_L = c.basisL(c.Lproj, c.L, lamda, s, p, c.LA, 1,
                                       c.epsl, basis_L[:, :, 0], proj_L[:, :,
                                                                        0])
            basis_R, proj_R = c.basisR(c.Rproj, c.R, lamda, s, p, c.RA, -1,
                                       c.epsr, basis_R[:, :, 0], proj_R[:, :,
                                                                        0])

    out = out[0:cnt]
    pre_imag = pre_imag[0:cnt]
    return out, pre_imag