コード例 #1
0
ファイル: White.py プロジェクト: zhaoxia413/STAMP
def detect_differentially_abundant_features(seqGroup1, seqGroup2,
                                            parentSeqGroup1, parentSeqGroup2,
                                            coverage, B, preferences,
                                            progress):
    numFeatures = len(seqGroup1)
    n1 = len(seqGroup1[0])
    n2 = len(seqGroup2[0])

    # convert to proportions
    propGroup1 = []
    for r in xrange(0, numFeatures):
        row = []
        for c in xrange(0, n1):
            row.append(float(seqGroup1[r][c]) / parentSeqGroup1[r][c])
        propGroup1.append(row)

    propGroup2 = []
    for r in xrange(0, numFeatures):
        row = []
        for c in xrange(0, n2):
            row.append(float(seqGroup2[r][c]) / parentSeqGroup2[r][c])
        propGroup2.append(row)

    # calculate t-statistics for unpooled variances for each feature
    T_statistics, effectSizes, notes = calc_twosample_ts(
        propGroup1, propGroup2)

    # generate statistics using non-parametric t-test based on permutations of the t-statistic
    pValuesOneSided, pValuesTwoSided, lowerCIs, upperCIs = permuted_statistics(
        propGroup1, propGroup2, seqGroup1, seqGroup2, T_statistics, coverage,
        B, progress)
    if progress != None and progress.wasCanceled():
        return [], [], [], [], [], []

    # generate p values for sparse data using fisher's exact test
    fishers = Fishers(preferences)
    diffBetweenProp = DiffBetweenPropAsymptoticCC(preferences)
    for r in xrange(0, numFeatures):
        if sum(seqGroup1[r]) < n1 and sum(seqGroup2[r]) < n2:
            p1, p2, note = fishers.hypothesisTest(sum(seqGroup1[r]),
                                                  sum(seqGroup2[r]),
                                                  sum(parentSeqGroup1[r]),
                                                  sum(parentSeqGroup2[r]))
            l, u, es, note = diffBetweenProp.run(sum(seqGroup1[r]),
                                                 sum(seqGroup2[r]),
                                                 sum(parentSeqGroup1[r]),
                                                 sum(parentSeqGroup2[r]),
                                                 coverage)
            pValuesOneSided[r] = p1
            pValuesTwoSided[r] = p2
            lowerCIs[r] = l
            upperCIs[r] = u
            effectSizes[r] = es
            notes[r] = "heuristic: statistics calculated with Fisher's test"

    return pValuesOneSided, pValuesTwoSided, lowerCIs, upperCIs, effectSizes, notes
コード例 #2
0
ファイル: STAMP_test.py プロジェクト: zhaoxia413/STAMP
	def testFishers(self):
		"""Verify computation of Fisher's exact test (minimum-likelihood approach)"""
		from stamp.plugins.samples.statisticalTests.Fishers import Fishers
		fishers = Fishers(preferences)
		
		# Ground truth obtained from R version 2.10		
		oneSided, twoSided, _ = fishers.hypothesisTest(table1[0], table1[1], table1[2], table1[3])	 
		self.assertAlmostEqual(oneSided, 0.16187126209690825)
		self.assertAlmostEqual(twoSided, 0.2715543327789185)
		
		oneSided, twoSided, _ = fishers.hypothesisTest(table2[0], table2[1], table2[2], table2[3])	 
		self.assertAlmostEqual(oneSided, 2.220446049e-16)
		self.assertAlmostEqual(twoSided, 2.220446049e-16)
		
		oneSided, twoSided, _ = fishers.hypothesisTest(0.0, 0.0, 920852.999591, 953828.994346)
		self.assertAlmostEqual(oneSided, 1.0)
		self.assertAlmostEqual(twoSided, 1.0)
コード例 #3
0
ファイル: White.py プロジェクト: dparks1134/STAMP
def detect_differentially_abundant_features(seqGroup1, seqGroup2, parentSeqGroup1, parentSeqGroup2, coverage, B, preferences, progress):
	numFeatures = len(seqGroup1)   
	n1 = len(seqGroup1[0])
	n2 = len(seqGroup2[0])
	
	# convert to proportions
	propGroup1 = []
	for r in xrange(0, numFeatures):
		row = []
		for c in xrange(0, n1):
			row.append(float(seqGroup1[r][c]) / parentSeqGroup1[r][c])
		propGroup1.append(row)
			
	propGroup2 = []
	for r in xrange(0, numFeatures):
		row = []
		for c in xrange(0, n2):
			row.append(float(seqGroup2[r][c]) / parentSeqGroup2[r][c])
		propGroup2.append(row)

	# calculate t-statistics for unpooled variances for each feature
	T_statistics, effectSizes, notes = calc_twosample_ts(propGroup1, propGroup2)

	# generate statistics using non-parametric t-test based on permutations of the t-statistic
	pValuesOneSided, pValuesTwoSided, lowerCIs, upperCIs = permuted_statistics(propGroup1, propGroup2, seqGroup1, seqGroup2, T_statistics, coverage, B, progress)
	if progress != None and progress.wasCanceled():
		return [], [], [], [], [], []
	
	# generate p values for sparse data using fisher's exact test
	fishers = Fishers(preferences)
	diffBetweenProp = DiffBetweenPropAsymptoticCC(preferences)
	for r in xrange(0, numFeatures):
		if sum(seqGroup1[r]) < n1 and sum(seqGroup2[r]) < n2:
			p1, p2, note = fishers.hypothesisTest(sum(seqGroup1[r]), sum(seqGroup2[r]), sum(parentSeqGroup1[r]), sum(parentSeqGroup2[r]))
			l, u, es, note = diffBetweenProp.run(sum(seqGroup1[r]), sum(seqGroup2[r]), sum(parentSeqGroup1[r]), sum(parentSeqGroup2[r]), coverage)
			pValuesOneSided[r] = p1 
			pValuesTwoSided[r] = p2 
			lowerCIs[r] = l
			upperCIs[r] = u
			effectSizes[r] = es
			notes[r] = "heuristic: statistics calculated with Fisher's test"

	return pValuesOneSided, pValuesTwoSided, lowerCIs, upperCIs, effectSizes, notes 
コード例 #4
0
ファイル: GTestFisher.py プロジェクト: IUEayhu/STAMP
class GTestFisher(AbstractSampleStatsTestPlugin):
	'''
	Perform G-test w/ Yates' correction or Fisher's exact test.
	'''
	
	def __init__(self, preferences):
		AbstractSampleStatsTestPlugin.__init__(self, preferences)
		self.name = 'G-test (w/ Yates\') + Fisher\'s'
		self.fishers = Fishers(self.preferences)
		self.gTestYates = GTestYates(self.preferences)
		
	def hypothesisTest(self, seq1, seq2, totalSeq1, totalSeq2):
		a = seq1
		b = seq2
		c = totalSeq1 - seq1
		d = totalSeq2 - seq2
		
		if a < 20 or b < 20 or c < 20 or d < 20:
			return self.fishers.hypothesisTest(seq1, seq2, totalSeq1, totalSeq2)
		else:
			return self.gTestYates.hypothesisTest(seq1, seq2, totalSeq1, totalSeq2)
コード例 #5
0
ファイル: GTestFisher.py プロジェクト: zhaoxia413/STAMP
class GTestFisher(AbstractSampleStatsTestPlugin):
    '''
	Perform G-test w/ Yates' correction or Fisher's exact test.
	'''
    def __init__(self, preferences):
        AbstractSampleStatsTestPlugin.__init__(self, preferences)
        self.name = 'G-test (w/ Yates\') + Fisher\'s'
        self.fishers = Fishers(self.preferences)
        self.gTestYates = GTestYates(self.preferences)

    def hypothesisTest(self, seq1, seq2, totalSeq1, totalSeq2):
        a = seq1
        b = seq2
        c = totalSeq1 - seq1
        d = totalSeq2 - seq2

        if a < 20 or b < 20 or c < 20 or d < 20:
            return self.fishers.hypothesisTest(seq1, seq2, totalSeq1,
                                               totalSeq2)
        else:
            return self.gTestYates.hypothesisTest(seq1, seq2, totalSeq1,
                                                  totalSeq2)
コード例 #6
0
ファイル: GTestFisher.py プロジェクト: zhaoxia413/STAMP
 def __init__(self, preferences):
     AbstractSampleStatsTestPlugin.__init__(self, preferences)
     self.name = 'G-test (w/ Yates\') + Fisher\'s'
     self.fishers = Fishers(self.preferences)
     self.gTestYates = GTestYates(self.preferences)
コード例 #7
0
ファイル: GTestFisher.py プロジェクト: IUEayhu/STAMP
	def __init__(self, preferences):
		AbstractSampleStatsTestPlugin.__init__(self, preferences)
		self.name = 'G-test (w/ Yates\') + Fisher\'s'
		self.fishers = Fishers(self.preferences)
		self.gTestYates = GTestYates(self.preferences)