コード例 #1
0
    def run(
        self, stack: ImageStack,
    ) -> Tuple[IntensityTable, ConnectedComponentDecodingResult]:
        """decode pixels and combine them into spots using connected component labeling

        Parameters
        ----------
        stack : ImageStack
            ImageStack containing spots

        Returns
        -------
        IntensityTable :
            IntensityTable containing decoded spots
        ConnectedComponentDecodingResult :
            Results of connected component labeling

        """
        pixel_intensities = IntensityTable.from_image_stack(
            stack, crop_x=self.crop_x, crop_y=self.crop_y, crop_z=self.crop_z)
        decoded_intensities = self.codebook.metric_decode(
            pixel_intensities,
            max_distance=self.distance_threshold,
            min_intensity=self.magnitude_threshold,
            norm_order=self.norm_order,
            metric=self.metric
        )
        caf = CombineAdjacentFeatures(
            min_area=self.min_area,
            max_area=self.max_area,
            mask_filtered_features=True
        )
        decoded_spots, image_decoding_results = caf.run(intensities=decoded_intensities)

        return decoded_spots, image_decoding_results
def compute_magnitudes(stack, norm_order=2):

    pixel_intensities = IntensityTable.from_image_stack(zero_norm_stack)
    feature_traces = pixel_intensities.stack(traces=(Indices.CH.value,
                                                     Indices.ROUND.value))
    norm = np.linalg.norm(feature_traces.values, ord=norm_order, axis=1)

    return norm
コード例 #3
0
def test_reshaping_between_stack_and_intensities():
    """
    transform an pixels of an ImageStack into an IntensityTable and back again, then verify that
    the created Imagestack is the same as the original
    """
    np.random.seed(777)
    image = ImageStack.from_numpy_array(np.random.rand(1, 2, 3, 4, 5).astype(np.float32))
    pixel_intensities = IntensityTable.from_image_stack(image, 0, 0, 0)
    image_shape = (image.shape['z'], image.shape['y'], image.shape['x'])
    image_from_pixels = pixel_intensities_to_imagestack(pixel_intensities, image_shape)
    assert np.array_equal(image.numpy_array, image_from_pixels.numpy_array)
コード例 #4
0
def test_imagestack_to_intensity_table_no_noise(synthetic_spot_pass_through_stack):
    codebook, intensity_table, image = synthetic_spot_pass_through_stack
    pixel_intensities = IntensityTable.from_image_stack(image)
    pixel_intensities = codebook.metric_decode(
        pixel_intensities, max_distance=0, min_intensity=1000, norm_order=2)
    assert isinstance(pixel_intensities, IntensityTable)
コード例 #5
0
def test_imagestack_to_intensity_table():
    codebook, intensity_table, image = codebook_intensities_image_for_single_synthetic_spot()
    pixel_intensities = IntensityTable.from_image_stack(image)
    pixel_intensities = codebook.metric_decode(
        pixel_intensities, max_distance=0, min_intensity=1000, norm_order=2)
    assert isinstance(pixel_intensities, IntensityTable)