def __init__(self): super().__init__() self.slot = [ State.Slot(Root.size[0] / 2 - 100, Root.size[1] / 2), ] self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, '', self.go_back) ]
def __init__(self): super().__init__() self.slot = [ State.Slot(Root.size[0] / 2 - 100, Root.size[1] / 2), State.Slot(Root.size[0] / 2 - 100, Root.size[1] / 2 + 30) ] self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, '시작하기', self.start), State.Input(self.slot[1].x, self.slot[1].y, '만든 사람들', self.credit) ] self.pointer = State.Pointer(self.slot[self.place].x, self.slot[self.place].y)
def __init__(self): State().read() self.audio = Audio() audioPatch = AudioPatch() self.audioPatch = audioPatch self.audio.setAudioObject(audioPatch.output()) self.audio.setClock(audioPatch.clock) State().params['patchbay'].setCallback(audioPatch.patchbay)
def frames(): from FigureNumber import FigureNumber from state.State import State from state.Model import Model from state.Reaction import Reaction from state.Species import Species from state.SpeciesReference import SpeciesReference from state.Histogram import Histogram from state.HistogramFrames import HistogramFrames # Figure number. figureNumber = FigureNumber() # A histogram. numberOfBins = 4 multiplicity = 2 h = Histogram(numberOfBins, multiplicity) h.setCurrentToMinimum() h.accumulate(0, 1) h.accumulate(1, 2) h.accumulate(2, 2) h.accumulate(3, 1) # Simulation output. frameTimes = [0, 1] recordedSpecies = [0, 1, 2] hf = HistogramFrames(numberOfBins, multiplicity, recordedSpecies) hf.setFrameTimes(frameTimes) for i in range(len(frameTimes)): for j in range(len(recordedSpecies)): hf.histograms[i][j].merge(h) # The model. model = Model() model.speciesIdentifiers = ['s1', 's2', 's3'] # The state. state = State() state.models['model'] = model state.output[('model', 'method')] = hf app = wx.PySimpleApp() TestConfiguration(None, 'Populations.', state, figureNumber).Show() app.MainLoop()
def average(): from FigureNumber import FigureNumber from state.State import State from state.Model import Model from state.Reaction import Reaction from state.Species import Species from state.SpeciesReference import SpeciesReference from state.Histogram import Histogram from state.HistogramAverage import HistogramAverage # Figure number. figureNumber = FigureNumber() # A histogram. numberOfBins = 4 multiplicity = 2 h = Histogram(numberOfBins, multiplicity) h.setCurrentToMinimum() h.accumulate(0, 1) h.accumulate(1, 2) h.accumulate(2, 2) h.accumulate(3, 1) # Simulation output. recordedSpecies = [0, 1, 2] output = HistogramAverage(numberOfBins, multiplicity, recordedSpecies) for x in output.histograms: x.merge(h) # The model. model = Model() model.speciesIdentifiers = ['s1', 's2', 's3'] # The state. state = State() state.models['model'] = model state.output[('model', 'method')] = output app = wx.PySimpleApp() TestConfiguration(None, 'Populations.', state, figureNumber).Show() app.MainLoop()
def main(): from FigureNumber import FigureNumber from state.StatisticsFrames import StatisticsFrames from state.State import State from state.Model import Model #from state.Reaction import Reaction class TestConfiguration(wx.Frame): """Test the Configuration panel.""" def __init__(self, parent, title, state, figureNumber): wx.Frame.__init__(self, parent, -1, title) panel = Configuration(self, state, figureNumber) bestSize = self.GetBestSize() # Add twenty to avoid an unecessary horizontal scroll bar. size = (bestSize[0] + 80, min(bestSize[1], 700)) self.SetSize(size) self.Fit() app = wx.PySimpleApp() figureNumber = FigureNumber() s = ['a', 'b', 'c'] t = StatisticsFrames([0, 1, 2]) t.setFrameTimes([0, 1, 2]) t.setStatistics([1, 0.1, 2, 0.2, 3, 0.3] * 3) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers = s # Dummy reactions. #model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r] # Store the trajectories. state.output[(modelId, 'method')] = t TestConfiguration(None, 'Populations.', state, figureNumber).Show() app.MainLoop()
def __init__(self): super().__init__() self.slot = [ State.Slot(Root.size[0] / 2 - 100, Root.size[1] / 2), State.Slot(Root.size[0] / 2 - 100, Root.size[1] / 2 + 30), State.Slot(Root.size[0] / 2 - 100, Root.size[1] / 2 + 60) ] self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, '다시하기', self.restart), State.Input(self.slot[1].x, self.slot[1].y, '메인화면으로', self.start_screen), State.Input(self.slot[2].x, self.slot[2].y, '끝내기', self.end) ] self.pointer = State.Pointer(self.slot[self.place].x, self.slot[self.place].y)
def show_actions(self, text1, text2, text3, text4): self.slot = [ State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 2), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 3), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 4), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 5) ] self.place = 0 self.show_action = True self.pointer = 0 self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, text1, self.getover_turn), State.Input(self.slot[1].x, self.slot[1].y, text2, self.getover_turn), State.Input(self.slot[2].x, self.slot[2].y, text3, self.getover_turn), State.Input(self.slot[3].x, self.slot[3].y, text4, self.getover_turn), ]
def open_magic_menu(self): self.place = 0 if Root.turn and not self.player1_choose: Sp.random_spell(self.player1) self.player1_choose = True elif not Root.turn and not self.player2_choose: Sp.random_spell(self.player2) self.player2_choose = True if Root.turn: self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, self.player1.spell_list[0].name, self.use_spell), State.Input(self.slot[1].x, self.slot[1].y, self.player1.spell_list[1].name, self.use_spell), State.Input(self.slot[2].x, self.slot[2].y, self.player1.spell_list[2].name, self.use_spell), State.Input(self.slot[3].x, self.slot[3].y, self.player1.spell_list[3].name, self.use_spell), State.Input(self.slot[4].x, self.slot[4].y, '돌아가기', self.init) ] else: self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, self.player2.spell_list[0].name, self.use_spell), State.Input(self.slot[1].x, self.slot[1].y, self.player2.spell_list[1].name, self.use_spell), State.Input(self.slot[2].x, self.slot[2].y, self.player2.spell_list[2].name, self.use_spell), State.Input(self.slot[3].x, self.slot[3].y, self.player2.spell_list[3].name, self.use_spell), State.Input(self.slot[4].x, self.slot[4].y, '돌아가기', self.init) ] self.pointer = State.Pointer(self.slot[self.place].x, self.slot[self.place].y)
def init(self): self.place = 0 if not Root.turn: self.slot = [ State.Slot(Root.size[0] / 16 + Root.size[0] / 2, Root.size[1] / 2 + 50), State.Slot(Root.size[0] / 16 + Root.size[0] / 2, Root.size[1] / 2 + 50 * 2), State.Slot(Root.size[0] / 16 + Root.size[0] / 2, Root.size[1] / 2 + 50 * 3), State.Slot(Root.size[0] / 16 + Root.size[0] / 2, Root.size[1] / 2 + 50 * 4), State.Slot(Root.size[0] / 16 + Root.size[0] / 2, Root.size[1] / 2 + 50 * 5) ] else: self.slot = [ State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 2), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 3), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 4), State.Slot(Root.size[0] / 16, Root.size[1] / 2 + 50 * 5) ] self.menu = [ State.Input(self.slot[0].x, self.slot[0].y, '기본 공격', self.basic_atk), State.Input(self.slot[1].x, self.slot[1].y, '스킬', self.open_magic_menu), State.Input(self.slot[2].x, self.slot[2].y, '마나 회복', self.recover_mp) ] self.pointer = State.Pointer(self.slot[self.place].x, self.slot[self.place].y)
def checkState(self): for inppName, value in State().params['patchbay'].items(): for outppName in value: self.newPcFromPpNames(inppName, outppName)
def main(): from state.TimeSeriesFrames import TimeSeriesFrames from state.TimeSeriesAllReactions import TimeSeriesAllReactions from state.State import State from state.Model import Model from state.Reaction import Reaction from state.Species import Species from state.SpeciesReference import SpeciesReference app = wx.PySimpleApp() # Many species. s = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] r = ['r1', 'r2', 'r3', 'r4'] t = TimeSeriesFrames() t.setFrameTimes([0, 1, 2]) t.recordedSpecies = range(len(s)) t.recordedReactions = range(len(r)) t.appendPopulations([1]*len(s) + [2]*len(s) + [3]*len(s)) t.appendReactionCounts([0]*len(r) + [2]*len(r) + [4]*len(r)) t.appendPopulations([2]*len(s) + [3]*len(s) + [5]*len(s)) t.appendReactionCounts([0]*len(r) + [3]*len(r) + [6]*len(r)) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers = s # Dummy reactions. model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r] # Store the trajectories. state.output[(modelId, 'method')] = t Export(None, 'Populations.', state).Show() s = ['a', 'b', 'c'] r = ['r1', 'r2', 'r3', 'r4'] t = TimeSeriesFrames() t.setFrameTimes([0, 1, 2]) t.recordedSpecies = range(len(s)) t.recordedReactions = range(len(r)) t.appendPopulations([1]*len(s) + [2]*len(s) + [3]*len(s)) t.appendReactionCounts([0]*len(r) + [2]*len(r) + [4]*len(r)) t.appendPopulations([2]*len(s) + [3]*len(s) + [5]*len(s)) t.appendReactionCounts([0]*len(r) + [3]*len(r) + [6]*len(r)) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers = s # Dummy reactions. model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r] # Store the trajectories. state.output[(modelId, 'method')] = t Export(None, 'Populations.', state).Show() initialTime = 0. finalTime = 1. t = TimeSeriesAllReactions([0, 1], [0, 1], initialTime, finalTime) t.appendIndices([0]) t.appendTimes([0.5]) t.appendInitialPopulations([13, 17]) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers.append('s1') model.species['s1'] = Species('C1', 'species 1', '13') model.speciesIdentifiers.append('s2') model.species['s2'] = Species('C1', 'species 2', '17') model.reactions.append( Reaction('r1', 'reaction 1', [SpeciesReference('s1')], [SpeciesReference('s2')], True, '1.5')) model.reactions.append( Reaction('r2', 'reaction 2', [SpeciesReference('s1'), SpeciesReference('s2')], [SpeciesReference('s1', 2)], True, '2.5')) # Store the trajectories. state.output[(modelId, 'method')] = t Export(None, 'Populations.', state).Show() app.MainLoop()
def close(self): State().save() self.audio.stop()
def main(): import os from state.TimeSeriesFrames import TimeSeriesFrames from state.TimeSeriesAllReactions import TimeSeriesAllReactions from state.State import State from state.Model import Model from state.Reaction import Reaction from state.Species import Species from state.SpeciesReference import SpeciesReference class TestConfiguration(wx.Frame): """Test the Configuration panel.""" def __init__(self, parent, title, state): wx.Frame.__init__(self, parent, -1, title) panel = Configuration(self, state) bestSize = self.GetBestSize() # Add twenty to avoid an unecessary horizontal scroll bar. size = (bestSize[0] + 80, min(bestSize[1], 700)) self.SetSize(size) self.Fit() app = wx.PySimpleApp() # Many species. s = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' ] r = ['r1', 'r2', 'r3', 'r4'] t = TimeSeriesFrames() t.setFrameTimes([0, 1, 2]) t.recordedSpecies = range(len(s)) t.recordedReactions = range(len(r)) t.appendPopulations([1] * len(s) + [2] * len(s) + [3] * len(s)) t.appendReactionCounts([0] * len(r) + [2] * len(r) + [4] * len(r)) t.appendPopulations([2] * len(s) + [3] * len(s) + [5] * len(s)) t.appendReactionCounts([0] * len(r) + [3] * len(r) + [6] * len(r)) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers = s # Dummy reactions. model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r] # Store the trajectories. state.output[(modelId, 'method')] = t TestConfiguration(None, 'Time series frames.', state).Show() s = ['a', 'b', 'c'] r = ['r1', 'r2', 'r3', 'r4'] t = TimeSeriesFrames() t.setFrameTimes([0, 1, 2]) t.recordedSpecies = range(len(s)) t.recordedReactions = range(len(r)) t.appendPopulations([1] * len(s) + [2] * len(s) + [3] * len(s)) t.appendReactionCounts([0] * len(r) + [2] * len(r) + [4] * len(r)) t.appendPopulations([2] * len(s) + [3] * len(s) + [5] * len(s)) t.appendReactionCounts([0] * len(r) + [3] * len(r) + [6] * len(r)) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers = s # Dummy reactions. model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r] # Store the trajectories. state.output[(modelId, 'method')] = t TestConfiguration(None, 'Time series frames.', state).Show() initialTime = 0. finalTime = 1. t = TimeSeriesAllReactions([0, 1], [0, 1], initialTime, finalTime) t.appendIndices([0]) t.appendTimes([0.5]) t.appendInitialPopulations([13, 17]) state = State() # Set the species identifiers. modelId = state.insertNewModel() model = state.models[modelId] model.id = modelId model.speciesIdentifiers.append('s1') model.species['s1'] = Species('C1', 'species 1', '13') model.speciesIdentifiers.append('s2') model.species['s2'] = Species('C1', 'species 2', '17') model.reactions.append( Reaction('r1', 'reaction 1', [SpeciesReference('s1')], [SpeciesReference('s2')], True, '1.5')) model.reactions.append( Reaction('r2', 'reaction 2', [SpeciesReference('s1'), SpeciesReference('s2')], [SpeciesReference('s1', 2)], True, '2.5')) # Store the trajectories. state.output[(modelId, 'method')] = t TestConfiguration(None, 'Time series all reactions.', state).Show() app.MainLoop()